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Age and palaeomagnetism of dolerite intrusions of
the southeastern Collier Basin, and the Earaheedy and
Yerrida Basins, Western Australia

by
M. T. D. Wingate'

Abstract

Integrated U-Pb geochronology and palacomagnetism of the Glenayle Dolerite have been used to determine whether siliciclastic
sedimentary rocks of the Salvation Group, on the STANLEY 1:250 000 map sheet, correlate with Mesoproterozoic rocks of the
Edmund and Collier Basins or with Neoproterozoic rocks of the northwestern Officer Basin.

Ton microprobe U-Pb baddeleyite geochronology of two dolerite samples yielded mean ’Pb/**Pb ages of 1068 + 20 and
1063 £ 21 Ma. These data are combined to yield a mean age of 1066 + 14 Ma, which is interpreted as the age of intrusion of
the Glenayle Dolerite. This is a minimum age for deposition of the Salvation Group, and rules out any correlation with
Neoproterozoic rocks of the Sunbeam Group.

Palacomagnetic measurements were conducted on samples from ten sites in the Glenayle Dolerite, including the two dated
sites, and from a single site in the Prenti Dolerite of the Palaeoproterozic Earaheedy Basin. All sites yield a stable magnetization
component directed to the north-northwest with moderate downward inclination. Based on rock magnetic and palacomagnetic
evidence for the presence of single-domain magnetite, and on agreement with primary palacomagnetic directions observed in
dolerites of the same age in the western Edmund and Collier Basins, the Glenayle and Prenti magnetizations are inferred to be
primary thermoremanent magnetizations acquired during sill emplacement and cooling at 1066 Ma. Combined data for the
Glenayle and Prenti Dolerites yield a palacomagnetic pole at 33°N, 109°E, and indicate a palaeolatitude of 30°30'N for the
Salvation Group at 1066 Ma. The sampled dolerites probably represent an insufficient number of separate intrusions, however,
to have adequately averaged palacosecular variation of the Earth’s magnetic field. Agreement of palacomagnetic data from
across the Edmund and Collier Basins implies that no significant vertical axis rotations have affected the Capricorn Orogen
since 1070 Ma.

The similarity of isotopic ages and palaecomagnetic poles of the Glenayle and Prenti Dolerites, and dolerites from the
western Edmund and Collier Basins indicate that these rocks were emplaced during the same magmatic event at c¢. 1070 Ma.
Similar ages have been determined for mafic igneous rocks in the northwestern Yilgarn Craton, at the base of the Empress 1A
drillhole in the western Officer Basin, and in the Musgrave Complex of central Australia, suggesting that these rocks belong to
a single large igneous province (LIP). Widespread magmatism across western and central Australia at this time was synchronous
with deformation and magmatism in the Pinjarra Orogen, late-stage deformation in the Albany—Fraser Orogen, and possibly
with deformation of the western Edmund and Collier Basins during the Edmundian Orogeny.

Comparison of late Mesoproterozoic palacomagnetic data for Australia and Laurentia does not support previous reconstructions
of Australia—Antarctica against either western Canada (the SWEAT hypothesis) or the western United States (the AUSWUS
hypothesis). The data permit a 1070 Ma reconstruction (AUSMEX: Australia—Mexico) that closely aligns late Mesoproterozoic
orogenic belts in northeastern Australia and southernmost Laurentia. However, a preliminary assessment of c¢. 1.2 Ga palaeopoles
does not support a late Mesoproterozoic connection between Australia and Laurentia, although a 25 million-year mismatch in
age could mask significant latitudinal motion of either continent.

A reconnaissance palacomagnetic and rock magnetic survey was conducted on samples from four sites in altered dolerite
sills of the Killara Formation in the Palacoproterozoic Yerrida Basin. The magnetizations of these rocks are of low stability,
with unblocking temperatures below 350°C, and are directed inconsistently, both within and between sites. These magnetizations
are interpreted as overprints resulting mainly from alteration, possibly during the 1.83 to 1.78 Ga Capricorn Orogeny, or from
weathering. No coherent palacomagnetic component could be determined for the Killara Formation sills.

KEYWORDS: Australia, Collier Basin, dolerite, sills, geochronology, Glenayle Dolerite, Mesoproterozoic, palacomagnetism,
Palaeoproterozoic, Salvation Group, Yerrida Basin.

! Tectonics Special Research Centre, School of Earth and Geographical Sciences, The University of Western Australia, 35 Stirling

Highway, Crawley, WA 6009.



Wingate

Introduction

Purpose and scope

This Record describes an investigation into the age and
palaeomagnetic characteristics of a suite of dolerite sills,
known as the Glenayle Dolerite (Hocking et al., 2000),
that intrude sedimentary rocks of the Salvation Group in
the southeastern Collier Basin in the area around Glenayle
Homestead, mainly on the STANLEY* 1:250 000 map sheet
(Commander et al., 1982; Fig. 1). Rocks of the Salvation
Group were considered initially to be part of the
Bangemall Supergroup, and therefore of Mesoproterozoic
age (Muhling and Brakel, 1985). Bagas et al. (1999) and
Hocking et al. (2000), however, correlated parts of the
succession with the Neoproterozoic Sunbeam Group of the
Officer Basin.

This study was initiated to distinguish between these
alternatives by comparing palaeomagnetic characteristics
of the Glenayle Dolerite with those of other studied
Proterozoic rocks, in particular the 1070 Ma BBS
pole from dolerite sills in the western Bangemall
Supergroup (Wingate, 2002), and, if possible, by direct
U-Pb dating of the Glenayle Dolerite using the sensitive
high-resolution ion microprobe (SHRIMP). The project
was extended to study a dolerite sill, referred to as
the Prenti Dolerite, intruding Palaeoproterozoic rocks of
the adjacent Earaheedy Basin, that may be equivalent in
age to the Glenayle Dolerite. The implications of the
geochronological and palacomagnetic results for regional
tectonics and continental reconstructions are discussed
briefly. Also reported here are the results of a reconn-
aissance palacomagnetic study of Palaeoproterozoic
dolerite sills in the Yerrida Basin (Pirajno and Adamides,
2000).

Location and access

The Glenayle Dolerite was studied on the STANLEY and
southwestern TrRaNOR 1:250 000 map sheets (Fig. 1;
Commander et al., 1982; Williams, 1995). Palacomagnetic
sampling concentrated on the MubpaN and GLENAYLE
1:100 000 sheets (on STANLEY), which have recently been
remapped in detail (Pirajno and Hocking, 2001, 2002). A
dolerite sill near Prenti Downs Homestead, south of Lake
Carnegie, on the VonN TRever 1:100 000 map sheet (on
Kingston 1:250 000), was also sampled.

Palaeoproterozoic dolerite sills of the Yerrida Basin
were sampled at three localities north of Wiluna, on
the Cunyu (on WiLuna 1:250 000) and THADUNA (on PEAk
HiLe 1:250 000) 1:100 000 map sheets, and at one
locality farther west, northeast of Killara Homestead, on
the GLENGARRY 1:100 000 map sheet (on GLENGARRY
1:250 000). All study areas are on land held as Pastoral
Leases and year-round access is via graded shire roads and
station tracks.

*  Capitalized names refer to standard 1:100 000 and 1:250 000 map sheets.

Dolerite sills in the
southeastern Collier Basin
and Earaheedy Basin

Geological setting

The Edmund and Collier Basins, known previously as the
‘Bangemall Basin’ (Muhling and Brakel, 1985), are
intracratonic basins of Mesoproterozoic age located
between the Pilbara and Yilgarn Cratons (Fig. 1).
Sedimentary successions within the Edmund and Collier
Basins consist of the Edmund Group and the overlying
Collier Group, which together comprise the Bangemall
Supergroup (Martin et al., 1999; Martin and Thorne,
2002). The Edmund and Collier Groups unconformably
overlie rocks that were deformed or metamorphosed (or
both) during the 1.83 to 1.78 Ga Capricorn Orogeny, which
resulted from the collision of the Pilbara and Yilgarn
Cratons (Tyler and Thorne, 1990; Occhipinti et al., 1999).

The Collier Group contains up to 3 km of siltstone and
sandstone (Martin et al., 1999), and incorporates the
previous Karbhan, Manganese, Mucalana, and Collier
Subgroups, and possibly the Oldham and Ward Inliers
within the northwestern Officer Basin (Muhling and
Brakel, 1985; Williams, 1990; Hocking et al., 2000). The
Scorpion Group, which contains up to 10 km of carbonate
and fine to coarse clastic rocks, unconformably underlies
the Collier Group (Fig. 1) and has been correlated with the
Edmund Group (Williams, 1990). The Bangemall
Supergroup is overlain unconformably by Neoproterozoic
strata of the Sunbeam Group, which is part of the
northwestern Officer Basin (Bagas et al., 1999).

The Bangemall Supergroup contains large volumes of
tholeiitic dolerite sills (Muhling and Brakel, 1985). Two
suites of sills in the western part of the region gave
SHRIMP U-Pb zircon and baddeleyite ages of 1465 +3
and 1070 = 6 Ma (Wingate, 2002). The older sills are
apparently restricted to the Edmund Group, whereas the
younger suite is present in both the Edmund and Collier
Groups. The Collier Group was therefore deposited before
1070 Ma. The Edmund Group is older than 1465 Ma
(Wingate, 2002), and younger than 1619 + 15 Ma
monzogranite in the underlying Gascoyne Complex
(Nelson, 1998; Sheppard and Swager, 1999). The tectonic
controls on dolerite magmatism within the Bangemall
Supergroup are not clear, although the 1070 Ma episode
was synchronous with metamorphic and igneous activity
in the Pinjarra Orogen (Harris, 1995; Bruguier et al.,
1999), and with mafic magmatism in the Musgrave
Complex of central Australia (Glikson et al., 1996; Zhao
and McCulloch, 1993).

Resolving the ages, stratigraphic relationships, and
correlation of sedimentary rocks in the southeastern part
of the Collier Group has been problematic, however, and
several revisions have been proposed in recent years.
Defined originally as the Kahrban Subgroup of the
Mesoproterozoic Bangemall Group by Muhling and Brakel
(1985), parts of the succession (Jiliyili, Brassey Range, and
Coonabildie Formations; Fig. 2) were correlated with the
Neoproterozoic Sunbeam Group by Bagas et al. (1999) and
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Figure 1. Regional geological setting of the Edmund, Collier, and Yerrida Basins. Boxes show the areas studied.

The 1:250 000 map sheets on which work was carried out are named, including the Ebmunp sheet worked on by

Wingate (2002)

Hocking et al. (2000). However, preliminary palaeo-
magnetic directions for the Glenayle Dolerite, which
intruded these formations, were recognized as similar to
those obtained from 1070 Ma dolerite sills in the western
part of the Bangemall Supergroup (Wingate, 2002). Based
on these initial palaecomagnetic results, and also on
stratigraphic and palacocurrent information and subsequent
K-Ar dating, the Jiliyili, Brassey Range, and Coonabildie
Formations were recognized as older than the Officer
Basin strata, but possibly younger than the Collier Group,
and were assigned by Hocking and Jones (2002) to a new
unit — the Salvation Group (Fig. 2).

Glenayle Dolerite sills and the enclosing Salvation
Group sedimentary rocks are generally flat lying or

very gently folded, with dips typically less than 5°
(Commander et al., 1982; Pirajno and Hocking, 2001,
2002). Sills typically exceed 100 m in thickness, and
chilled margins are exposed in places. The number of
separate intrusions comprising the Glenayle Dolerite is
unknown, and could be as low as one or two. The K—Ar
ages of 917 £+ 13 and 968 + 19 Ma (both +26) determined
for K-feldspar from two samples of granophyric Glenayle
Dolerite (Fig. 3) are interpreted as minimum estimates of
the time of dolerite crystallization (Nelson, 2002).
Compston (1974) and Preiss et al. (1975) reported Rb—Sr
and K-Ar ages of c. 1050 Ma for dolerite sills intruding
sedimentary rocks of the adjacent Earaheedy Basin on the
RogerT 1:250 000 map sheet.
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Figure 2. Stratigraphic correlation of the Salvation Group

Petrography of dolerite sills

The Glenayle Dolerite consists of fine- to medium-grained

microgabbro sills and dykes. Three different types of

dolerite were recognized by Pirajno and Hocking (2002),

all containing variable amounts of granophyre:

e very fine to medium-grained basaltic rock with
abundant (typically 5 to 7%) disseminated Fe-Ti
oxides and minor sulfide grains;

e fine- to medium-grained dolerite containing distinct
millimetre-scale blebs of pink quartz—K-feldspar
granophyre, also commonly with abundant Fe—Ti
oxides;

e medium- to coarse-grained gabbro, locally mesocratic
and granophyric. Most samples contain plagioclase
(labradorite Ang, 5,, ~50% by volume), augite (~35%),
and more rarely pigeonite or enstatite, with textures
ranging from typically ophitic to intergranular.
Interstitial quartz—orthoclase (locally adularia)
granophyre increases (up to 20-30%) towards the tops
of sills. Accessory minerals include disseminated
Fe—Ti oxides, quartz, apatite, biotite, hornblende,
chlorite, and prehnite.

The Glenayle Dolerite is intruded by aphanitic to very
fine grained dolerite sills and dykes, referred to as the
Prenti Dolerite by Pirajno and Hocking (2002). This rock
is petrographically similar to the sill intruding the
Earaheedy Group (at site L, Fig. 1). The Prenti Dolerite
typically contains plagioclase (Ansg 55, 50-55%) and
granular augite (partially replaced by chlorite and biotite),
with an intergranular—glomeroporphyritic texture. In some
samples disseminated Fe-Ti oxides comprise up to 10%

of the rock. It has not been determined whether the
Glenayle and Prenti Dolerites are comagmatic or represent
separate magmatic events.

Geochronology

Samples for U-Pb geochronology were obtained from two
sites (Appendix 1) in dolerite sills that were also sampled
for palacomagnetism (Fig. 3). All material was trimmed
in the field to yield about 20 kg of unweathered rock. The
most coarse grained differentiated rocks were selected as
the most likely to contain zircon or baddeleyite. Zircon is
relatively rare in mafic intrusions, and is of xenocrystic
origin in many cases (e.g. Black et al., 1991). Baddeleyite
(ZrQ,) is a trace constituent in many mafic intrusions, in
which it typically forms small (<100 um long), pleochroic
brown crystals with monoclinic (2/m) symmetry and
tabular habit. Baddeleyite has a high blocking temperature
(similar to zircon), is enriched in uranium, has very
low initial lead, is highly resistant to loss of radiogenic
lead, and is highly unlikely to form xenocrysts in
mafic intrusions (Heaman et al., 1992; Heaman and
LeCheminant, 1993; Wingate, 2000). Baddeleyite is
therefore ideal for accurately dating the crystallization of
mafic intrusive rocks by the U-Pb method.

Sample preparation and analytical
procedures

For each sample about 800 g of rock (crushed to <250 pum)
was washed carefully to remove fines, then processed by
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Figure 3. Simplified geological map of Glenayle Dolerite sills intruding the Salvation Group on the StanLey and adjacent
1:250 000 map sheets. The locations of samples collected during this study for palaeomagnetism (circles) and U-Pb
geochronology (diamonds) are indicated. The U-Pb ages are interpreted as accurate estimates of the time of dolerite
crystallization. Also shown are locations of samples dated by K-Ar (triangles) at sites C and J; ages were interpreted

as minimum estimates of the time of crystallization (Nelson, 2002)

conventional magnetic and density techniques to
concentrate nonmagnetic heavy fractions. Although no
zircons were recovered, the two samples each yielded
between 50 and 70 baddeleyite crystals, which were hand-
picked from concentrates under a binocular microscope.

All crystals are pleochroic, from light to dark brown,
and most are either euhedral crystals or broken fragments
of euhedral crystals. They reach up to 100 um in length
and 30 to 50 um in width. Crystal surfaces are typically
clean and smooth, with no evidence of secondary zircon
overgrowths, which can form by interaction of baddeleyite
with silica-bearing fluids during metamorphism or
alteration (e.g. Wingate et al., 1998). Several crystals
contain central cavities or channels (Fig. 4) — a textural

feature indicative of rapid crystallization at shallow crustal
levels (Lofgren, 1980; Brossart et al., 1986).

Crystals from the two samples, together with a
baddeleyite reference standard, were cast in an epoxy
mount, which was then polished to section the crystals for
analysis. About 30% of the crystals were lost during
polishing because of their very thin, tabular habit. The
mount was cleaned thoroughly, and the polished surface
was documented with transmitted and reflected light
micrographs, then vacuum coated with an approximately
500 nm layer of high-purity gold. To eliminate any
residual water from the sampling surface, the mount was
pumped down to high vacuum overnight in the ion
microprobe sample lock before analysis.



Wingate

50 pm

MTW33

15.11.02

Figure 4. Typical baddeleyite crystals separated from Glenayle Dolerite sample 152661

Measurements of U, Th, and Pb were conducted using
the Perth Consortium SHRIMP II ion microprobe at Curtin
University of Technology, using operating and data-
processing procedures for baddeleyite described by
Wingate et al. (1998). Data were collected in sets of
six scans through the mass spectrum for both samples
during a single analytical session. Calculated ages are
based on decay constants recommended by Steiger
and Jdger (1977). Values of **Pb/**U measured in
baddeleyite by ion microprobe have been shown to vary
significantly and systematically with the relative
orientation of the baddeleyite crystal structure and the
direction of the primary ion beam; therefore, ages are
determined from *’Pb/?*Pb values, which are unaffected
by this phenomenon (Wingate et al., 1998; Wingate
and Compston, 2000). Accuracy was monitored by
repeated analysis of baddeleyite from the 2060 Ma
Phalaborwa Carbonatite, which has been characterized
previously by both conventional isotope dilution and
SHRIMP techniques (Heaman and LeCheminant, 1993;
Reischmann, 1995; Wingate, 1997). The mean *"Pb/**Pb
age of 2063 £ 3.3 Ma (1o, n = 12, MSWD = 0.14,
where ¢ = standard deviation, n = number of analyses,
MSWD = mean square of weighted deviates) is
not significantly different from the accepted value
(2059.8 +£ 0.4 Ma, 10), and no corrections for isotope
fractionation or hydride interference are indicated.
Although subject to high dispersion from crystal
orientation effects, 2**U/?°°Pb values, determined

by calibration against the Phalaborwa Carbonatite
baddeleyite, are also reported here for Glenayle Dolerite
baddeleyite (Tables 1 and 2, Figs 5a and 6a), and
considered semi-quantitatively below as evidence against
significant radiogenic-Pb loss in these crystals.

Because of heterogeneity in >*U in the Phalaborwa
baddeleyite (a mean value of 300 ppm U was assumed,
based on previous studies: 292—1389 ppm, Heaman and
LeCheminant, 1993; 230-392 ppm, Reischmann, 1995),
calculated absolute >¥U and 2**Th concentrations are
approximate, but are proportional to true values within
each analytical session. Measured compositions were
corrected for common Pb using nonradiogenic 2*Pb.
Before analysis, each site was cleaned by rastering the
primary ion beam over the area for up to three minutes.
Subsequently, **Pb* counts for most analyses remained
low and constant, and showed no tendency to decrease
over the course of a 15-minute analysis, suggesting that
common Pb in these crystals is mainly inherent to the
mineral rather than surface related. In most cases
corrections are sufficiently small to be insensitive to the
choice of common-Pb composition, and an average crustal
composition (Cumming and Richards, 1975) appropriate
to the age of the mineral was assumed. Weighted mean
ages for pooled analyses are reported with 95% confidence
intervals (except where noted otherwise), calculated from
16 uncertainties multiplied by the appropriate value of
Student’s t for n—1 degrees of freedom.
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Table 1. Uranium-lead analytical data for baddeleyite from Glenayle Dolerite sample 152661

Grain 38y 227 ThU Foos _ppBy ____ 27pp/pp 27Pp/%Ph age
area (ppm) (ppm) (%) (x10) (xlo) (Ma)  (xl0)
1.1 366 58 0.16 0.008 0.1897 0.0058 0.07522 0.00268 1074 70
2.1 218 73 0.34 0.422 0.1621 0.0090 0.07476 0.00347 1062 91
3.1 201 29 0.15 0.255 0.1914 0.0049 0.07717 0.00273 1126 69
4.1 67 5 0.08 0.101 0.1719 0.0045 0.07501 0.00149 1069 39
5.1 71 5 0.08 0.195 0.1680 0.0021 0.07538 0.00235 1079 61
6.1 139 7 0.05 0.518 0.1851 0.0052 0.07435 0.00120 1051 32
7.1 73 14 0.19 0.490 0.1750 0.0045 0.07340 0.00215 1025 58
8.1 222 42 0.19 0.087 0.1785 0.0065 0.07424 0.00119 1048 32
9.1 192 17 0.09 0.257 0.1806 0.0066 0.07456 0.00179 1057 48
10.1 238 42 0.18 0.158 0.1634 0.0042 0.07410 0.00184 1044 49
11.1 364 79 0.22 0.015 0.1871 0.0034 0.07632 0.00109 1103 28
12.1 137 14 0.11 0.167 0.1854 0.0023 0.07643 0.00176 1106 45
13.1 50 3 0.07 0.992 0.1805 0.0061 0.07327 0.00734 1021 190
14.1 226 34 0.15 0.101 0.1751 0.0056 0.07592 0.00096 1093 25
15.1 192 25 0.13 0.548 0.1687 0.0035 0.07432 0.00115 1050 31
16.1 242 25 0.10 0.220 0.1824 0.0085 0.07532 0.00276 1077 72
17.1 111 6 0.05 0.180 0.1742 0.0037 0.07444 0.00129 1053 35
18.1 172 36 0.21 0.034 0.1719 0.0026 0.07575 0.00199 1088 52
19.1 94 5 0.05 0.808 0.1664 0.0022 0.07339 0.00177 1025 48
20.1 59 5 0.08 1.474 0.1729 0.0056 0.07153 0.00405 973 111
21.1 79 8 0.11 1.379 0.1625 0.0034 0.07764 0.00818 1138 196
22.1 113 14 0.13 2.501 0.1721 0.0045 0.07417 0.00765 1046 195
23.1 118 9 0.08 1.759 0.2061 0.0053 0.07374 0.00565 1034 147

NOTES: fyis the proportion of common **Pb in total measured **°Pb, as determined using ***Pb/***Pb
Uncertainties in 2Pb/**U values do not include a contribution of 4.0% (10) arising from calibration against the baddeleyite standard values

Table 2. Uranium-lead analytical data for baddeleyite from Glenayle Dolerite sample 171741

Grain Wy 227 U Fous _ wppsy _ 7ppyipp 207pp/%ph age
area (ppm) (ppm) (%) (+lo) (xlo) (Ma) (xlo)
1.1 119 25 021 0.066 0.1812 0.0066 0.07536 0.00495 1078 126
2.1 147 14 0.09 0.038 0.1877 0.0050 0.07536 0.00066 1078 18
3.1 70 6 0.08 0.172 0.1779 0.0024 0.07389 0.00149 1038 40
4.1 86 2 0.02 0.177 0.1728 0.0038 0.07623 0.00301 1101 77
5.1 104 15 0.14 0.314 0.1817 0.0022 0.07376 0.00249 1035 67
6.1 89 12 0.14 0.001 0.1718 0.0044 0.07538 0.00178 1079 47
7.1 79 7 0.08 0.341 0.1665 0.0046 0.07617 0.00208 1099 54
8.1 237 37 0.16 0.293 0.1714 0.0043 0.07416 0.00111 1 046 30
9.1 74 3 0.04 0.105 0.1895 0.0045 0.07781 0.00374 1142 93
10.1 33 3 0.08 1.099 0.1755 0.0033 0.07432 0.00412 1050 108
111 50 5 0.10 0.541 0.1661 0.0033 0.07145 0.00212 970 60
12.1 67 6 0.08 0.475 0.1837 0.0048 0.07274 0.00475 1007 127
13.1 71 6 0.08 0.412 0.1776 0.0026 0.07666 0.00178 1112 46
14.1 101 11 0.10 0.412 0.1727 0.0056 0.07304 0.00607 1015 160
15.1 60 8 0.13 0.630 0.1658 0.0020 0.07352 0.00244 1028 66
16.1 82 13 0.15 0.344 0.1677 0.0037 0.07653 0.00263 1109 67
18.1 110 13 0.11 0.550 0.1788 0.0068 0.07439 0.00454 1052 118
19.1 129 23 0.18 0.585 0.1773 0.0046 0.07593 0.00243 1093 63
20.1 133 14 0.10 0.371 0.1638 0.0014 0.07351 0.00127 1028 34
21.1 122 16 0.13 0.415 0.1688 0.0203 0.07546 0.00228 1081 60
22.1 121 26 021 1.368 0.1909 0.0043 0.07404 0.00479 1043 125
23.1 60 5 0.09 1.020 0.1886 0.0072 0.07654 0.00433 1109 109
24.1 55 5 0.09 0.608 0.1723 0.0055 0.07308 0.00263 1016 71

NOTE:  fyis the proportion of common **Pb in total measured ***Pb, as determined using **Pb/*"°Pb
Uncertainties in 2*Pb/**U values do not include a contribution of 4.0% (10) arising from calibration against the baddeleyite standard values
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Figure 5. lon microprobe analytical data for baddeleyite from sample 152661: a) U-Pb evolution (concordia)

diagram; b) Normalized probability density curves for individual 2’Pb/2Pb values. Dark-grey bands
indicate the weighted mean age and 95% confidence interval. Inset shows the cumulative probability
density curve and histogram of all 27Pb/?Pb ages; n = number of analyses
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Results

Sample 152661, east of site D

This sample of fresh, medium-grained granophyric
dolerite was collected 1.1 km east of palacomagnetism site
D, in part of the same intrusion from which the palaeo-
magnetic samples were collected (Fig. 3). Twenty-three
analyses were conducted of 23 baddeleyite crystals
(Table 1). Concentrations of **U range from 50 to
366 ppm, with a median of 140 ppm; ***Th ranges from 3
to 80 ppm, with a median of 14 ppm; Th/U varies from
0.05 to 0.3, with a median of 0.1. Common Pb is low for
most analyses. The proportion of common 2*Pb in total
measured 2Pb (f, in data tables) ranges from less than
0.01 to 1.0% for 19 analyses, and is between 1.0 and 2.5%
for the remaining four analyses.

All 23 2Pb/*Pb values agree to within analytical
precision (Fig. 5), yielding a mean of 0.07498 + 0.00036
(MSWD = 0.4), equivalent to an age of 1067.9 + 9.6 Ma
(16). No significant correlation exists between 2’Pb/**Pb
and U or Th concentration. Large uncertainties for several
analyses reflect low U content (and therefore low
radiogenic Pb) and large relative corrections for common
Pb (Table 1). The weighted mean *’Pb/?*Pb age of
1068 + 20 Ma (95% confidence interval) is interpreted as
the age of baddeleyite crystallization.

Sample 171741, site K

This sample of medium-grained granophyric dolerite was
collected at palaecomagnetism site K, from the same
outcrop area as the palacomagnetic samples (Fig. 3).
Twenty-three baddeleyite crystals were analysed (Table 2).
Concentrations of *¥U range from 33 to 237 ppm, with a
median of 86 ppm; ?*?Th ranges from 2 to 37 ppm, with a
median of 10 ppm; Th/U varies between 0.02 and 0.2.
Values for f,, range from less than 0.01 to 0.6% for 20
analyses, and are between 1.0 and 1.4% for the remaining
three analyses.

Twenty-three 2°Pb/?Pb values agree to within
analytical precision (Fig. 6), with a mean of 0.07481
+ 0.00038 (MSWD = 0.4), equivalent to an age
of 1063.4 + 10.3 Ma (1o). Large uncertainties correlate
with either large corrections for common Pb or low U
content, or both (Table 2). The weighted mean *"Pb/**Pb
age of 1063 + 21 Ma (95% confidence interval) is
considered the best estimate of the age of baddeleyite
crystallization.

Discussion and summary

Baddeleyite crystals were recovered from two samples of
Glenayle Dolerite and dated by SHRIMP. Ages based on
27Pb/?%Pb values for the two samples agree to within
analytical precision (Table 3). Low dispersion of
207Pb/XPb values implies that any loss of radiogenic Pb
was insignificant, or was geologically recent in age. This
inference is supported by values of *3U/?®Pb for each
sample, which (although subject to bias arising from
crystal orientation effects) as a group are centred

Table 3. Mean *"Pb/**Pb ages for Glenayle Dolerite samples

Site Sample Mineral dated n Mean *”Pb/Pb age
(Ma)

D 152661 baddeleyite 23 1068 + 20

B 171741 baddeleyite 23 1063 + 21

Mean of two samples 46 1066 + 14

NOTES: n = number of analyses. Ages are reported with 95% confidence intervals

approximately on concordia (Figs 5a, 6a), rather than
being mainly normally discordant, as would be expected
in the case of significant lead loss.

It is very unlikely that baddeleyite in mafic intrusions
can be inherited from older rocks, hence the ages obtained
for the two samples are considered to date accurately
the time of crystallization of the dolerite. As discussed
above (Geological setting), it is likely that the two
dated samples are comagmatic, perhaps part of the
same sill. It is therefore reasonable to combine all 46
analyses from two samples to yield a mean 2’Pb/*Pb age
of 1066 + 14 Ma (95% confidence interval), which is
interpreted as the best estimate of the age of the Glenayle
Dolerite.

Palaeomagnetism

In this section palacomagnetic results are reported for
Glenayle Dolerite sills intruding the Salvation Group on
the STANLEY and southwestern TRaNOR 1:250 000 map
sheets, and for a sill (Prenti Dolerite) intruding the
Earaheedy Group on the Kingston 1:250 000 map sheet.
Magnetic minerals (mainly Fe-Ti oxides) within an
igneous rock record the direction of the magnetic field at
the time the rock cools. Dolerite dykes and sills, within
which the typical primary magnetic carrier is relatively
pure magnetite (Fe;O,), are excellent recorders of the
Earth’s magnetic field. Fine-grained (single-domain,
SD) magnetite, which is present in chilled sill margins,
is highly stable and resistant to later thermal resetting
of its magnetization. In the laboratory detailed
thermal (TH) and alternating field (AF) demagnetization
techniques are used to progressively remove less
stable magnetic components in order to isolate a
‘characteristic’ remanence. Within a single crustal block
all rocks of the same age (within a few million
years) would be expected, in the absence of later alteration
or deformation, to yield similar palacomagnetic poles,
hence palaecomagnetism can be used to correlate rock units
over wide areas.

Sample collection

Core samples of Glenayle Dolerite were collected at nine
sites (A to J, Fig. 3; adjacent sites F and G are combined
as a single site) using a portable diamond drill, and at one
site (K) by collecting oriented block samples from
which cores were drilled in the laboratory. Core samples
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were also drilled at a single site in the Prenti Dolerite
of the Earaheedy Basin. Site descriptions are provided
in Appendix 1. Geographic site coordinates were
determined using a Global Positioning System (GPS)
receiver. Between five and twelve cores (typically seven
to nine), separated by up to several tens of metres, were
drilled at each site. To avoid possible effects of lightning
strikes, samples were obtained mainly from low-lying
areas, such as creek beds, where the least weathered
rocks also tend to be present. Core samples were oriented
using both magnetic and sun compasses. For the majority
of samples, magnetic and sun orientation measurements
agree to within 5°; in all cases, sun readings were taken
as accurate. All Glenayle Dolerite samples are relatively
fresh and unaltered; the outcrop sampled in the Prenti
Dolerite (site L) is moderately weathered.

Because the dolerite sills are commonly flat lying and
the topography is subdued, bedding attitudes in adjacent
sedimentary rocks could not be measured at all sites, but
were estimated in most cases from detailed regional
mapping of sedimentary outcrops within a few kilometres
of each site (Pirajno and Hocking, 2001, 2002). Tectonic
corrections of up to 5° were applied to data from four of
11 sites (Table 4).

Analytical methods

Palacomagnetic analyses were conducted at the University
of Western Australia laboratory in Perth. Each core
sample, 2.5 cm in diameter and typically between 3 and
8 cm in length, was cut into 2.2 cm-long specimens
for analysis. Remanence composition was determined
by detailed stepwise AF demagnetization (up to 18 steps,
up to 160 mT) of one specimen from each core, using a
2G-Enterprises cryogenic magnetometer. Up to four
specimens from each site were subjected to detailed
stepwise thermal demagnetization (up to 11 steps, 100 to
580°C), using a Magnetic Measurements thermal
demagnetizer and 2G-Enterprises magnetometer. Samples

Age and palaeomagnetism of dolerite intrusions, Collier, Earaheedy, and Yerrida Basins

were pretreated in four steps up to 20 mT before thermal
analysis to reduce possible isothermal remanence (IRM)
due to lightning strikes (Schmidt, 1993). To monitor
possible mineralogical changes during heating, magnetic
susceptibility was measured in selected samples after
each heating step using a Bartington MS2 susceptibility
meter. Magnetic mineralogy was investigated from
thermal demagnetization characteristics and, in selected
samples, from detailed variation of susceptibility versus
temperature (20 to 700°C) obtained using the Bartington
meter in conjunction with an automated Bartington
furnace. Magnetization vectors were isolated using
Principal Component Analysis (Kirschvink, 1980).
Line segments were calculated with a minimum of four
data points and a maximum angular deviation (MAD)
of 10 to 15°. The AF and thermal results for specimens
from the same core sample were averaged and sample
means given unit weight in statistical calculations for each
site.

Results

Measurements were conducted on 109 specimens from 86
core samples. Natural remanent magnetizations (NRMs)
are of moderate intensity, between 0.1 and 48 A/m, with
an average of about 7 A/m (Fig. 7). For the majority of
specimens a low-coercivity overprint was removed by AF
demagnetization to 10 or 20 mT. Directions are consistent
for specimens from the same core sample, but, in most
cases, vary randomly for different samples. These
overprints probably have a variety of origins, including
weathering and lightning. Some are similar to Earth’s
present field direction, and may be recent viscous
remanent magnetizations (VRMs).

After removal of low-coercivity overprints, magnetiz-
ations are typically single component, and vector
endpoints decay linearly to the origin in orthogonal plots,
yielding well-defined directions (Figs 8 and 9). Thermal
and AF demagnetization methods yield similar

Table 4. Site mean directions and virtual geomagnetic poles (VGPs) for the Glenayle Dolerite (sites A to K) and Prenti Dolerite (site L)

Site Location Bedding N, n Direction (in situ) Direction (rotated) VGP

Lat. Long. (dip/dip D 1 k Ags D’ r Lat. Long.

(S) (E) azimuth) (°) (°) (°) (°) (°) (N) (E)
A 25°25'16" 122°14'53" 02/035 9,7 345.3 43.8 99 6.1 346.7 425 37° 105°36'
B 25°1'12" 121°35'10" 9,6 3334 49.6 75 7.8 333.4 49.6 29° 95°24'
C 25°4'55" 121°42'54" 11,8 345.3 40.6 85 6.0 3453 40.6 39°42' 104°6'
D 25°11'35" 121°53'17" 16, 10 346.5 36.2 190 35 346.5 36.2 42°48' 104°30'
E 25°528" 122°0'54" 9,6 340.2 524 446 32 340.2 52.4 28°54' 103°6'
FG 25°11'38" 122°13'30" 05/005 15,8 344.6 61.4 90 59 347.3 56.7 26°24' 111°
H 25°13°52" 122°32'17" 7,5 357.1 61.4 109 7.4 357.1 61.4 22°12' 120°12'
I 25°12'47" 122°292" 12, 8 005.0 57.7 208 39 005.0 57.7 26°18' 126°54'
J 25°16'34" 122°5'53" 05/035 8,6 336.4 51.2 38 11.0 341.3 48.4 32°30" 102°42'
K 24°55'41" 121°3622" 6,6 356.1 49.7 15 17.9 356.1 49.7 34°24' 117°30'
L 26°31'37" 122°4926" 04/035 7,4 346.1 423 34 16.0 348.7 39.6 39°48' 109°12'
NOTES: N = number of specimens analysed n = number of samples given unit weight in calculation of site mean direction

D = declination (east of north)
k = Fisher’s (1953) precision parameter
VGPs are calculated from rotated (bedding-corrected) directions

I = inclination (positive downwards)
Olys = circle of 95% confidence about mean direction
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Figure 7. Natural remanent magnetization (NRM) intensities

measured in samples from the Glenayle Dolerite
(sites A—K) and Prenti Dolerite (site L). Adjacent
sites F and G are combined as a single site; n =
number of analyses

results. Unblocking temperatures of between 500 and
580°C, in most cases above 540°C, indicate that relatively
pure magnetite is the dominant remanence carrier.
Most specimens are stable during AF treatment up to
fields of 60 to 160 mT. A range of AF demagnetization
characteristics indicates variable proportions of multi-
domain (MD) and single-domain grains, the latter
exhibiting characteristic sigmoidal AF decay curves (e.g.
Figs 8a and 9a). These observations are corroborated by
detailed susceptibility versus temperature measurements,
which indicate Curie temperatures of above 530°C and the
presence of SD magnetite (Fig. 10).

Aberrant palaecomagnetic directions measured in six
samples from suspected rotated blocks at four sites, and
in three high-intensity samples probably affected by
lightning, were not considered in the calculation of site
mean directions (Fig. 11). All nine excluded directions are
significantly different from the site mean direction at
99% confidence level (McFadden, 1982). One sample
became unstable at 20 mT and yielded no useful
information. The remaining palacomagnetic directions at
each site are directed consistently to the north or north-
northwest with moderate downward inclination, and low

within-site dispersion (Fig. 11). After applying corrections
for bedding tilt to data from three of ten sites, the
concentration parameter, k, increases from 62 to 69
(Fig. 12). The mean palacomagnetic direction for sites A
to K in the Glenayle Dolerite, after tectonic correction, is
D = 347.3°, I = 49.8° (0 = 5.9°, n = 10 sites), where
D = declination (east of north); I = inclination (positive
downwards); 0,5 = circle of 95% confidence about
mean direction; k = Fisher’s (1953) precision parameter;
n = number of sites.

Similar results were obtained from four of seven
samples from site L in the Prenti Dolerite (Fig. 13).
The mean direction (square symbol in Fig. 12), after
recalculation to correspond to that expected in the centre
of the Glenayle area (25°12'S, 122°5'E), is in excellent
agreement with directions observed in the Glenayle
Dolerite. Three discordant directions at site L (Fig. 13)
may reflect low-temperature chemical overprints
related to the moderate weathering that has affected the
outcrop.

Evidence supporting a primary origin for the Glenayle
magnetization includes:

e low within-site dispersion, which is typical of primary
thermoremanent magnetizations (TRM) observed in
intrusions that cool rapidly;

e SD magnetite grains in some samples, which require
heating close to 580°C to unblock their magnetization
(Pullaiah et al., 1975; Walton, 1980), and the lack of
evidence for a younger thermal event that could have
caused a remagnetization;

e precise agreement between the tilt-corrected mean
direction for the Glenayle Dolerite and the primary
magnetic remanence (star in Fig. 12) observed in
dolerite sills of the same age, 600 km to the west, on
the Epmunp 1:250 000 map sheet (Fig. 1; Wingate,
2002).

These observations indicate that the magnetization of
the Glenayle Dolerite is a primary TRM dating from the
time of sill emplacement at 1066 Ma.

The pole position, GLD, for ten sites (A to K) in the
Glenayle Dolerite, calculated as the mean of site virtual
geomagnetic poles (VGPs, Table 4), lies at 32°18'N,
122°17'E (Ays = 6.3°, n = 10 sites, where Ay = radius of
circle of 95% confidence about mean pole). Including the
VGP from the Prenti Dolerite (site L) changes the pole
position slightly, to 33°N, 109°17'E (Ays = 5.8°, n = 11
sites). This result meets six of the maximum seven
criteria for a fully reliable palaeopole, according to the
scheme of Van der Voo (1990). Because of the small
number of separate intrusions sampled (probably two to
four), however, the GLD pole may not have adequately
averaged palaeosecular variation (PSV), and should
therefore be regarded as a virtual geomagnetic pole
(VGP).

Summary

Palaeomagnetic measurements were conducted on samples
from 10 sites (A-K, Fig. 3) in the Glenayle Dolerite,
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Figure 8. Examples of alternating field (AF) and thermal (TH) demagnetization of two samples of a single core from each of sites
A and B. Orthogonal projections show trajectories of vector endpoints during progressive demagnetization (open/
closed symbols represent vertical/horizontal planes). Closed symbols in lower hemisphere equal-angle stereographic
projections indicate downward pointing directions. Demagnetization curves show changes in magnetization intensity
during treatment. Reference frame is present horizontal. The natural remanent magnetization (NRM) intensity is the
initial intensity measured before demagnetization
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Figure 9. Examples of alternating field (AF) and thermal (TH) demagnetization of two samples of a single core from each of sites
E and J. Orthogonal projections show trajectories of vector endpoints during progressive demagnetization (open/
closed symbols represent vertical/horizontal planes). Closed symbols in lower hemisphere equal-angle stereographic
projections indicate downward pointing directions. Demagnetization curves show changes in magnetization intensity
during treatment. Reference frame is present horizontal. The natural remanent magnetization (NRM) intensity is the
initial intensity measured before demagnetization
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Age and palaeomagnetism of dolerite intrusions, Collier, Earaheedy, and Yerrida Basins
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Variation of low-field susceptibility with temperature for the four samples shown in Figures 8 and 9 (heating =

solid curves; cooling = dashed curves). In each case, magnetizations are unblocked within a narrow
temperature interval (shaded) between 520 and 580°C. The sharp increase in susceptibility (H, Hopkinson peak)
just before unblocking indicates the presence of fine-grained (single-domain, SD) magnetite. Lower
susceptibilities during cooling indicate that some magnetite was consumed (probably oxidized to hematite)

above 580°C

which intruded the Salvation Group, and one site (L) in
the Prenti Dolerite sill, which intruded the Earaheedy
Group (Fig. 1). After removal of low-stability overprints,
the majority of samples from all sites exhibits a single
stable magnetization component directed to the
north or north-northwest with moderate downwards
inclination. Palaeomagnetic directions measured in
samples from the Prenti Dolerite are indistinguishable
from those in the Glenayle Dolerite. Based on rock
magnetic and palacomagnetic characteristics, and on
agreement with primary palacomagnetic directions in
dolerites of the same age in the western Bangemall
Supergroup (Wingate, 2002), the Glenayle and Prenti
Dolerite magnetizations are inferred to have been acquired
during sill emplacement and cooling at c. 1070 Ma.
Combining virtual geomagnetic poles for 11 sites (A to
L) in the Glenayle and Prenti Dolerites yields a mean
pole position at 33°N, 109°17'E (Table 5). The
sampled dolerites probably represent an insufficient
number of separate intrusions, however, to have ade-
quately averaged palaecosecular variation of the Earth’s
magnetic field.
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Synthesis

Age of the Glenayle Dolerite and
Salvation Group

The SHRIMP baddeleyite ages of 1068 += 20 and
1063 + 21 Ma obtained during this study are interpreted
as accurate estimates of the time of crystallization
of the Glenayle Dolerite. In view of the likelihood that
the two U-Pb samples were collected from parts of the
same intrusion, the baddeleyite data are combined to
yield a mean age of 1066 = 14 Ma (95% confidence
limits), which is regarded as the best estimate of the age
of the Glenayle Dolerite magmatic event. The age of
1066 Ma is also a minimum age for deposition of the
Salvation Group, and rules out any correlation with
Neoproterozoic rocks of the Sunbeam Group.

Recent K—Ar geochronology suggests minimum ages
for crystallization of the Glenayle Dolerite of 968 and
917 Ma (Nelson, 2002). These ages are significantly
younger than those determined from baddeleyite,
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Figure 11. Equal-angle stereographic projections showing palaecomagnetic directions at sites A to Kin the Glenayle Dolerite. Site
mean directions are shown by small symbols and a,; confidence circles (ay; = circle of 95% confidence about mean
direction). Closed symbols indicate downward pointing directions in lower hemisphere. Reference frame is present
horizontal. Square symbols indicate results not included in calculation of site mean directions (L = lightning-affected
samples; R = sample from suspected rotated block)

suggesting that the K—Ar samples have experienced some
loss of radiogenic Ar.

Regional correlations

The SHRIMP baddeleyite age of 1066 = 14 Ma obtained
for the Glenayle Dolerite is within uncertainty of the
SHRIMP baddeleyite and zircon age of 1070 + 6 Ma
reported by Wingate (2002) for dolerite sills intruding the
Edmund and Collier Groups in the western part of the
Bangemall Supergroup. This implies that the mafic rocks
in the two areas were emplaced during the same magmatic
event. This conclusion is corroborated by the close
correspondence of palacomagnetic directions (Fig. 12) and
poles (Fig. 14) for the Glenayle Dolerite and western
Bangemall Supergroup dolerites.

The tilt-corrected mean palacomagnetic direction
measured in the Prenti Dolerite at site L (Fig. 13) in the

Earaheedy Basin, recalculated for the centre of the
Glenayle Dolerite sampling area (25°12'S, 122°5'E), is
indistinguishable from the mean Glenayle Dolerite
direction (Fig. 12), implying that the intrusions in the two
areas are similar in age and were probably emplaced
during the same event at c. 1070 Ma. This is supported by
Rb-Sr and K—Ar ages of c. 1050 Ma reported for dolerite
sills in the Earaheedy Basin by Compston (1974) and
Preiss et al. (1975).

A K-Ar age of 1058 + 13 Ma was obtained for basalt
at the base of drillhole GSWA Empress 1A in the western
Officer Basin (Stevens and Apak, 1999), and U-Pb ages
averaging about 1075 Ma were determined for mafic
intrusive rocks of the Giles Complex in the western
Musgrave Complex (Glikson et al., 1996). Dolerite dykes
that trend east-northeasterly across the northwest
Yilgarn Craton (part of the Muggamurra swarm of Myers
etal., 1996) have yielded a preliminary SHRIMP U-Pb
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Figure 12. Site mean directions for Glenayle Dolerite, in
geographic (in situ) and stratigraphic (tilt-corrected)
coordinates. The overall mean direction in each
case is shown by a small symbol and shaded ag
circle. Also shown are palaeomagnetic directions
expected at the centre of the Glenayle study area
(25°12'S, 122°5'E) for 1070 Ma sills (Wingate, 2002)
in the western Bangemall Supergroup (star) and
for the Prenti Dolerite sill intruding the Earaheedy
Group at site L (square). Closed symbols indicate
downward pointing directions in lower hemisphere.
D = declination (east of north); / = inclination
(positive downwards); o; = semi-angle of cone of
95% confidence about mean direction; k= Fisher’s
(1953) precision parameter; n = number of sites

age of about 1070 Ma (Wingate, M. T. D., unpublished
data). Late Mesoproterozoic (c. 1070 Ma) mafic igneous
rocks therefore outcrop, with an east-southeasterly trend,
from the western margin of Western Australia to the
Musgrave Complex, over a distance of at least 1200 km
(Fig. 15). This observation prompted Pirajno et al. (2002)
to suggest that these mafic rocks might represent a single
large igneous province (LIP). The 1090 + 32 Ma
Alcurra dyke swarm (Kulgera sills) of the eastern
Musgrave Complex, and possibly the 1076 + 33 Ma Stuart
dykes of the southern Arunta Orogen (Sm-Nd isochron
ages; Zhao and McCulloch, 1993), may also be related to
this event.

It is possible, particularly in LIPs, for basaltic magma
to flow horizontally for hundreds or thousands of
kilometres through the crust (Ernst and Baragar, 1992;
White, 1992), hence the Glenayle Dolerite magma could
have originated from a source either beneath or perhaps
outside the Edmund and Collier Basins. Moreover, a single
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intrusion could extend through the entire Edmund and
Collier Basins — a distance of at least 900 km. This could
be explored further by studying the magnetic fabrics
(anisotropy of magnetic susceptibility; Tarling and
Hrouda, 1993) of the mafic igneous rocks, which can be
used to infer magma flow directions (e.g. Ernst and
Baragar, 1992).

Implications for regional tectonics

Dolerite emplacement at 1070 Ma in the Bangemall
Supergroup and surrounding rocks occurred during a
period of major extension, and may represent the final
phase of formation of the Collier Basin. In the western
part of the Bangemall Supergroup, Wingate (2002)
suggested that this extension was oriented northeast—
southwest, roughly orthogonal to the basin axis. Extension
in the southeast Collier Basin was presumably oriented in
a similar direction, approximately orthogonal to the
southern margin of the basin, which coincides roughly
with the northern margin of the Yilgarn Craton. The
agreement of palacomagnetic directions from the Glenayle

tilt-corrected
D = 348.7°,1= 39.6

O

in situ

D=346.1°, /= 42.3°
tgs= 16°
k=34

n =4 samples

MTW42 14.11.02

Figure 13. Equal-angle stereographic projection showing
palaeomagnetic directions, uncorrected for bedding
tilt, at site L in the the Prenti Dolerite. The site mean
directions (in situ and tilt-corrected) are shown by
small symbols and ay; confidence circles. Square
symbols indicate three results from weathered
rocks that were not included in calculation of the
site mean direction. Open/closed symbols indicate
upward/downward pointing directions in lower
hemisphere. D = declination (east of north); / =
inclination (positive downwards); oy = semi-angle
of cone of 95% confidence about mean direction; k
= Fisher’s (1953) precision parameter; n = number
of sites
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Table 5. Mean palaeomagnetic directions and poles for the Glenayle and Prenti Dolerites, and western Bangemall Supergroup dolerites

Mean direction Pole position
n D 1 k Olys n Lat. Long. k Ags
(°) (°) (N) (E)
1 Glenayle Dolerite (GLD), in situ 10 346.5 50.7 62 6.2 - - - - -
2 GLD, tilt-corrected 10 3473 498 69 59 10 32°18"  109°18' 59 6.3
3 GLD + Prenti Dolerite - - - - - 11 33° 109°18' 62 5.8
4 western Bangemall sills (BBS; Wingate, 2002) - - - - - 11 33°48' 95° 32 8.3
5 GLD + Prenti Dolerite + BBS (see text) - - - - - 13 34°18' 97°12' 34 7.3
NOTES: n = number of sites D = declination (east of north)
I = inclination (positive downwards) k = Fisher’s (1953) precision parameter
Olys = circle of 95% confidence about mean direction Ays = radius of circle of 95% confidence about mean pole

Pole positions for GLD and GLD + Prenti Dolerite are the means of virtual geomagnetic poles (VGPs) in Table 4. VGPs are calculated from rotated (bedding-corrected)
directions

Dolerite, Prenti Dolerite, and western Bangemall = western Edmund and Collier Basins, may have occurred
Supergroup dolerites (Fig. 12) indicates that no significant ~ soon after dolerite emplacement at 1070 Ma. This
vertical axis rotations occurred within the Edmund and  suggestion is based on:

Collier Groups or surrounding rocks since at least ¢ the observation that the Edmund Fold Belt corresponds

1070 Ma. with the area of greatest concentration of dolerite sills;
e the likelihood that dolerite emplacement would
Widespread magmatism across western and central have involved advection of considerable heat and
Australia at 1090-1060 Ma (Fig. 15) was synchronous consequent thermal weakening of the crust;
with deformation and magmatism in the Pinjarra Orogen ¢ the presence of a possible source of compressive stress
(Harris, 1995; Bruguier et al., 1999). Wingate (2002) during 1090-1060 Ma events in the adjacent Pinjarra
proposed that the Edmundian Orogeny, which affected the Orogen.
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Figure 14. Late Mesoproterozoic to Early Cambrian south palaeopoles for Australia (after Wingate, 2002). GLD = Glenayle
Dolerite; BBS = western Bangemall sills; MDS = Mundine Well dyke swarm. Ay; confidence circles are shown for the
MDS and older poles; A,; = radius of circle of 95% confidence about mean pole. Sources: 1 = Tanaka and ldnurm
(1994); 2 = Idnurm and Giddings (1988); 3 = Camacho et al. (1991); 4 = Wingate (2002); Wingate et al. (2002); 5 =
this study; 6 = Wingate and Giddings (2000); 7 = compilation in Wingate and Giddings (2000)
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Fitzsimons (2000) suggested that the Mesoproterozoic
blocks in the Pinjarra Orogen were accreted to the western
Australian margin some time after they were deformed and
metamorphosed further to the south (present coordinates),
but before ‘stitching’ of the Northampton Complex to the
western Australian margin at 755 Ma by the Mundine Well
dykes (Wingate and Giddings, 2000).

Late Mesoproterozoic pole positions

The virtual geomagnetic pole (GLD) for the Glenayle
Dolerite agrees with the palaeopole (BBS) determined for
dolerites in the western Bangemall Supergroup (Wingate,
2002). The discrepancy between the two poles (Fig. 14)
is thought to be due mainly to inadequate averaging of
palaeosecular variation (PSV) by the GLD pole, and
reflects the small number of separate intrusions available
for sampling in the flat-lying Glenayle Dolerite. The BBS
result, in contrast, is based on antipodal upward- and
downward-pointing palacomagnetic directions, indicating
that the magnetizations, collectively, span at least one
reversal of the Earth’s magnetic field and therefore are
likely to have adequately averaged PSV (Wingate, 2002).
This suggestion is supported by the lower concentration
parameter of k = 32 for the western Bangemall Supergroup
VGPs compared to k = 62 for those from the Glenayle
Dolerite (Table 5).

Accepting that the Glenayle Dolerite, Prenti Dolerite,
and western Bangemall Supergroup sills are coeval,
palacomagnetic data from the three areas can be
combined. Giving unit weight to each of the mean
Glenayle Dolerite VGPs (entry 2, Table 5) and the Prenti
Dolerite VGPs (site L, Table 4), and combining them with
11 VGPs from the western Bangemall sills (table 2 of
Wingate, 2002) yields a palaeopole at 97°12'E, 34°17'N
(Ags = 7.3°, n = 13), which is within 2° of the BBS
palaeopole based on the western Bangemall Supergroup
data alone. Results from the Glenayle Dolerite corroborate
the BBS palaeopole and improve its reliability by
demonstrating that much of the Capricorn Orogen has
remained essentially undeformed and (magnetically)
unaltered since at least 1070 Ma.

Late Proterozoic palaeolatitudes

The inclination of the tilt-corrected palaesomagnetic
direction for the Glenayle Dolerite is 49.8° (Table 5),
which corresponds to a palaeolatitude of 30.5°N for the
southeastern Collier Basin at 1070 Ma. Figure 16 shows
latitudinal positions for Australia between 1140 and
755 Ma. Data from the Lakeview Dolerite of the Mount
Isa Block indicate that Australia occupied high latitudes
at 1140 Ma, assuming that the North, South, and West
Australian cratonic assemblages were amalgamated by this
time. The BBS pole from the western Bangemall
Supergroup sills indicates that at c. 1070 Ma the continent
had moved to low to middle latitudes, and was rotated
slightly clockwise from its present orientation. The
Glenayle Dolerite VGP corresponds to a position for
Australia about 5° higher in palaeolatitude (dashed outline
on Fig. 17) than indicated by the BBS pole. Australia
occupied low latitudes and rotated slowly anticlockwise
during the remainder of the Neoproterozoic and into the
Palaeozoic (Wingate and Giddings, 2000; Pisarevsky et al.,
2001).

Late Mesoproterozoic continental
reconstructions

Reconstructions of Australia—Antarctica against either
western Canada (the SWEAT hypothesis; Moores, 1991;
Dalziel, 1991; Hoffman, 1991) or the western United
States (the AUSWUS hypothesis; Brookfield, 1993;
Karlstrom et al., 1999; Burrett and Berry, 2000) are based
mainly on geological correlations, and have yet to receive
quantitative support from precisely dated palacopoles. A
reconstruction similar to SWEAT or AUSWUS between
Australia (including the Mawson block of Antarctica;
Fitzsimons, 2000) and Laurentia (Fig. 17) cannot be
achieved by matching the BBS pole (or the Glenayle
Dolerite VGP) with the 1100 to 1020 Ma Laurentian
apparent polar wander path, indicating that neither fit is
viable at 1070 Ma. Superimposing the 1070 Ma BBS
palaeopole for Australia (Table 5, entry 4) and an
interpolated 1070 Ma pole position for Laurentia (Fig. 17)
permits a reconstruction — AUSMEX (Australia—Mexico)

based on

VGP alone

Glenayle Dolerite

N

c. 1140 Ma 1070 Ma 755 Ma
—Lakeview dolerite ——0°] [-Bangemall Supergroup sills —Mundine Well dykes
MTW45 ‘ 14.11.02

Figure 16. Late Proterozoic palaeolatitudes for Australia, based on palaeopoles for the Lakeview Dolerite of the Mount Isa Block
(Tanaka and Idnurm, 1994; Claoue-Long, J., 2002, written comm.), dolerite sills of the western Bangemall Supergroup
(Wingate, 2002), and the Mundine Well dyke swarm (Wingate and Giddings, 2000). Also shown (dashed outline) is the
palaeoposition of Australia based on the Glenayle Dolerite virtual geomagnetic pole (VGP)
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Figure 17. Late Mesoproterozoic to mid-Neoproterozoic reconstructions of East Gondwanaland (Australia + East Antarctica
+ India) and Laurentia, according to the SWEAT and AUSWUS hypotheses. Previous late Mesoproterozoic
palaeopoles for Australia, from the Stuart dykes (SDS, Idnurm and Giddings, 1988) and Kulgera sills (KDS,
Camacho et al., 1991), are less reliable than the 1070 + 6 Ma BBS pole from dolerite sills in the western Bangemall
Supergroup (Wingate et al., 2002). A reconstruction similar to SWEAT or AUSWUS cannot be achieved by matching
the BBS pole with any part of the 1100 to 1050 Ma Laurentian apparent polar wander (APW) path. Based on the BBS
pole, a possible reconstruction, AUSMEX, between Australia and Laurentia at 1070 Ma places the Grenville and
Cape River provinces at similar palaeolatitudes. The virtual palaecomagnetic pole GLD, from the Glenayle Dolerite,
is in agreement with the BBS pole, and supports the AUSMEX reconstruction. Rotation parameters and details of
Australian and Laurentian palaeopoles are described in Wingate et al. (2002). Late Mesoproterozoic ‘Grenville-age’
mobile belts are labelled. M is the Mawson block of East Antarctica (Fitzsimons, 2000). Poles are shown with Ay;
confidence circles; arbitrary lines of longitude are 30° apart
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— that closely aligns late Mesoproterozoic orogenic belts
in northeastern Australia and southernmost Laurentia
(Wingate et al., 2002).

However, palacomagnetic data for the 1235 Ma
Sudbury dykes (Palmer et al., 1977) place Laurentia at low
latitudes, whereas new palaeomagnetic results (Wingate,
M.T.D., unpublished data) for the 1212 + 10 Ma Fraser
dyke swarm (Wingate et al., 2000) and c. 1.2 Ga
metamorphic rocks of the Albany—Fraser Orogen
(Pisarevsky and Harris, 2001) place Australia at high
latitudes. Although the 25 million-year difference in age
between the two palaeopoles could mask significant
latitudinal motion of either continent, the large
difference in palaeolatitudes makes any direct connection
between the two continents at that time less likely, and
implies that they may have moved independently during
late Mesoproterozoic (Grenville-age) orogenic events.
Imprecise data suggest that both continents occupied high
latitudes at 1140 Ma. By 1070 Ma Australia and Laurentia
had moved to low-latitude positions, possibly in an
arrangement similar to AUSMEX. These observations
imply that Palaeoproterozoic and Mesoproterozoic
geological similarities between Australia and Laurentia
may be fortuitous, and that the Pacific Ocean did not form
by separation of eastern Australia and western Laurentia.

Dolerite sills in the Yerrida
Basin

During the same field expedition in which the Glenayle
Dolerite was sampled for palaecomagnetism and U-Pb
geochronology, samples were collected for a reconnaiss-
ance palaeomagnetic survey of dolerite sills in the
Palaeoproterozoic Yerrida Basin. The results of rock
magnetic and palaeomagnetic analyses of these samples
are presented here.

Geological background

The Palaeoproterozoic Yerrida Basin developed along the
northern margin of the Yilgarn Craton, and forms part of
the southern margin of the Capricorn Orogen (Fig. 1). The
present geometry of the Yerrida Basin is the result of
deformation, probably during the 1.83 — 1.78 Ga
Capricorn Orogeny (Tyler and Thorne, 1990; Occhipinti
et al., 1999), which involved southeast-directed thrusting
of the Bryah Group over the Yerrida Group along the
northeast-trending Goodin Fault (Fig. 18), deforming the
northwestern margin of the Yerrida Basin (Pirajno and
Adamides, 2000; Pirajno and Occhipinti, 2000).

The Yerrida Basin (Fig. 18) contains a lower sedi-
mentary succession (Windplain Group), overlain by a
volcano-sedimentary succession (Mooloogool Group).
The Windplain Group (Juderina and Johnson Cairn
Formations) unconformably overlies Archaecan basement
rocks and contains sandstone, shale, carbonate, and
evaporitic rocks, thought to have been deposited in shallow
epicontinental seas, with local development of sabkha
environments (Pirajno et al., 1995, 1996; Pirajno et al., in
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press). Continued extension led to development of a rift
basin (Mooloogool rift), within which a succession of
siliciclastic sedimentary and mafic igneous rocks, the
Mooloogool Group (Doolgunna, Thaduna, Killara, and
Maraloou Formations; Pirajno et al., 1998; Pirajno and
Adamides, 2000), was accumulated. The Doolgunna
and Thaduna Formations represent rift-fill facies, and
include conglomerates, megabreccias, and turbidites.
These formations interdigitate with each other and with
mafic igneous rocks of the Killara Formation, indicating
that high-energy sedimentation was contemporaneous with
volcanism (Pirajno and Adamides, 2000; Pirajno and
Occhipinti, 2000; Pirajno et al., in press). Volcanic activity
was followed by deposition of sulfidic shale, laminated
siltstone, and minor sandstone and carbonate of
the Maraloou Formation under stagnant and anoxic
conditions, probably in a lacustrine setting (Pirajno and
Adamides, 2000). In the western part of the basin, mafic
lavas and sills of the Killara Formation were emplaced into
unconsolidated wet sediments of the Maraloou Formation,
whereas in the east the Maraloou Formation uncon-
formably overlies the Killara Formation, suggesting
contemporaneous block faulting (Pirajno et al., 1998).

The Killara Formation contains about 1000 m of
commonly unmetamorphosed, flat-lying or gently dipping,
subaerial and subaqueous flows, sills, and dykes (Dawes
and Pirajno, 1998; Pirajno et al., 1998). Dolerite sills and
dykes of the Killara Formation intruded all formations of
the Yerrida Basin (Pirajno and Adamides, 2000; Pirajno
and Occhipinti, 2000). The igneous rocks have calc-
alkaline to tholeiitic basaltic and basaltic andesite
compositions, and have negative Nb anomalies and high
Ce/YD values (Pirajno et al., 1998). Multiple basalt flows
have been recognized, with unweathered flow tops
and without intercalated sedimentary material, indicating
rapid eruption (Pirajno and Occhipinti, 2000). These
geochemical and geological observations suggest that the
volcanic rocks of the Killara Formation are continental
flood basalts (Dawes and Pirajno, 1998; Pirajno et al.,
1998).

Sedimentary rocks of the Yerrida Group were
deposited between about 2.2 and 1.84 Ga. A Pb-Pb age
of 2173 + 63 Ma reported for stromatolitic carbonate at the
base of the Windplain Subgroup was interpreted as the age
of deposition (Woodhead and Hergt, 1997). Rasmussen
and Fletcher (2002) reported an age of 1843 + 10 Ma for
emplacement of a subvolcanic dolerite sill within the
Maraloou Formation, based on SHRIMP U-Pb dating of
monazite that developed in contact metamorphosed shale.
Evidence that the sill intruded wet sediment indicates
that the U-Pb age approximates the time of deposition
of the Maraloou Formation (Rasmussen and Fletcher,
2002).

Sampling and analytical
procedures

Procedures for sampling and palacomagnetic analysis are
similar to those described above for the Glenayle Dolerite.
Between eight and fourteen core samples were collected
at each of four sites in dolerite of the Killara Formation
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Figure 19. Natural remanent magnetization (NRM) intensities
measured in samples from four sites in dolerite
sills of the Killara Formation

(Fig. 18, Appendix 2). One specimen from each core
sample was subjected to detailed AF demagnetization;
duplicate specimens from two samples from each site were
demagnetized thermally.

Petrography

The Killara Formation consists of intrusive and extrusive
mafic rocks. The bulk of the intrusive rocks are ophitic
to subophitic augite dolerite, with or without ortho-
pyroxene. Some sills are composed of hypersthene
dolerite. Plagioclase is labradorite in composition
(Anss_4). Secondary quartz may be present and, in places,
is associated with chlorite and epidote. The main opaque
minerals are leucoxene and ilmenite, the latter commonly
in skeletal form. Dolerites show variable degrees of
alteration and epidotization. Plagioclase is commonly
saussuritized, and pyroxene is serpentinized.

Extrusive rocks consist of aphyric tholeiitic basalt, less
commonly microporphyritic or glomeroporphyritic, and
contain normative albite, diopside, hypersthene,
and olivine. Augite forms phenocrysts and is in the
groundmass. Aphyric basalts have a variolitic or intersertal
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to hyalopilitic texture with plagioclase microlites, augite
grains, and minor secondary quartz. Some porphyritic
varieties contain millimetre-scale augite, and plagioclase
phenocrysts are set in a very fine grained feathery
groundmass of clinopyroxene, plagioclase, and devitrified
glass. Plagioclase varies from fresh grains to grains that
are altered completely to clay minerals and chlorite.
Accessory ilmenite shows various stages of alteration to
leucoxene. Vesicles contain calcite, chlorite, epidote,
quartz, and, in places, feldspar or granophyric quartz and
feldspar, or zeolites (?stilbite).

Results

Measurements were conducted on 43 specimens from 35
core samples. Natural remanent magnetization (NRM)
intensities are weak and distributed bimodally, with about
half of the measurements grouped above 0.1 A/m and the
remainder below 0.01 A/m (Fig. 19). Specimens from site
D are particularly weak, with intensities averaging about
1 mA/m. By comparison, these values are three orders of
magnitude lower than NRM intensities measured in
samples of Glenayle Dolerite (Fig. 7).

The NRMs are directed either inconsistently or
commonly northward with moderate upward inclin-
ations, similar to Earth’s present field direction in the
study area. Most specimens are magnetically ‘soft’, and
magnetizations are effectively randomized after treatment
at AF fields of 20 to 30 mT or temperatures of 300 to
400°C (Figs 20 and 21). In several cases the magnetiz-
ations are stable at higher fields or temperatures, although
little consistency in direction is exhibited within results
for each site (Fig. 22).

An essential mineral in most dolerite intrusions is
relatively pure (>95%) magnetite, which forms during
cooling by oxyexsolution of high-temperature titano-
magnetite. Although magnetite-bearing rocks typically
have relatively high bulk susceptibilities, the suscept-
ibilities of four Killara Formation dolerite samples are
very low, and detailed susceptibility versus temperature
curves (Fig. 23) are probably dominated by contributions
from paramagnetic minerals (Tarling and Hrouda, 1993),
and little or no trace of a signature attributable to
magnetite is apparent. These curves can be contrasted with
those for samples of Glenayle Dolerite (Fig. 10), in which
susceptibility is dominated completely by the contribution
from magnetite.

Thermal demagnetization curves, summarized in
Figure 24, show distributed unblocking temperatures
between 100 and 350°C for seven samples; one sample
from site C yielded a demagnetization curve that indicates
unblocking of magnetite above 500°C. The magnetizations
of two samples are reduced considerably in intensity by
treatment at 100 and 200°C, suggesting that goethite is
the dominant remanence carrier in these samples. The
magnetizations of the remaining samples are effectively
destroyed by 350°C, suggesting that their remanence may
be carried mainly by maghemite, in which case the
apparent unblocking reflects inversion to hematite (Dunlop
and Ozdemir, 1997).



GSWA Record 2003/3

a) Site A

NRM W, up

5mT

W, up NRM

580°C
S
b) Site B
W, up
60 mT
NRM an
W, up
N
iNRM 580°C
MTW48

Age and palaeomagnetism of dolerite intrusions, Collier, Earaheedy, and Yerrida Basins

7.1 (AF)
N

7.2 TH)

—_

Magnetization, M/M,

Magnetization, M/M,

—_

Magnetization, M/M,

—_

Magnetization, M/M,

.04
L NRM = 161 mA/m
0 . X X :
0 10 20 30 40 50 60
Treatment step (mT)
0
NRM =179 mA/m
0 . . . . .
0 100 200 300 400 500 600
Treatment step (°C)
.04
L NRM = 1791 mA/m
0 : P —
0 10 20 30 40 50 60
Treatment step (mT)
or
NRM = 500 mA/m
0 . L . e o000,

o

100 200 300 400 500 600
Treatment step (°C)

07.04.03

Figure 20. Examples of alternating field (AF) and thermal (TH) demagnetization of two samples of a single core from each of sites
A and B in the Killara Formation. Orthogonal projections show trajectories of vector endpoints during progressive
demagnetization (open/closed symbolsrepresent vertical/horizontal planes). Open/closed symbols in lower hemisphere
equal-angle stereographic projections indicate upward/downward pointing directions. Demagnetization curves show
changes in magnetization intensity during treatment. Reference frame is present horizontal. The natural remanent
magnetization (NRM) intensity is the initial intensity measured before demagnetization
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Figure 21. Examples of alternating field (AF) and thermal (TH) demagnetization of two samples of a single core from each
of sites C and D in the Killara Formation. Orthogonal projections show trajectories of vector endpoints during
progressive demagnetization (open/closed symbols represent vertical/horizontal planes). Open/closed symbols
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Demagnetization curves show changes in magnetization intensity during treatment. Reference frame is present
horizontal. The natural remanent magnetization (NRM) intensity is the initial intensity measured before
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Figure 22. Palaeomagnetic directions measured at sites A to
D in dolerite sills of the Killara Formation. Open/
closed symbols in lower-hemisphere equal-angle
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Figure 23. Variation of low-field susceptibility with temperature for four samples of dolerite from the
Killara Formation (heating = solid curves; cooling = dashed curves). The lower part of
each plot shows the heating curve and actual measurements with an expanded vertical
scale. Cooling curves indicate production of magnetite during heating, probably the
result of high-temperature breakdown of nonmagnetic silicate minerals
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Figure 24. Thermal demagnetization curves for two samples
from each site in the Killara Formation

Summary and discussion

Palacomagnetic and rock magnetic measurements were
conducted on samples from four sites in dolerite sills of
the Killara Formation in the Yerrida Basin (Fig. 18). The
majority of magnetizations are of low coercivity,
becoming unstable after treatment to 20 or 30 mT.
Unblocking temperatures for seven of eight samples
subjected to thermal demagnetization are lower than
350°C. One sample analyzed thermally appears to carry
a magnetite-based remanence, but whether this is a
primary or secondary magnetization is unknown. Detailed
susceptibility versus temperature measurements indicate
that magnetite is largely absent from these samples.
Magnetization directions are highly dispersed, both within
and between sites, although several cluster close to the
direction of Earth’s present field in the study area.
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Together with petrographic evidence for moderate to
extensive alteration, these observations indicate that the
magnetizations of the Killara Formation dolerite sills are
either chemical remagnetizations (CRMs), acquired during
alteration or weathering, or, in some cases, recent viscous
overprints (VRMs). Alteration may have resulted from
fluid-related metasomatism during the 1.83 to 1.78 Ga
Capricorn Orogeny. High directional dispersion suggests
that the CRM overprints were acquired over an extended
interval or at different times. No coherent palacomagnetic
component could be determined for the Killara Formation
sills (Fig. 22). Based on the results for these pilot samples,
the Palaeoproterozoic rocks of the Yerrida Basin are less
than ideal targets for future palacomagnetic studies.
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Appendix 1

Sample site descriptions — southeast Collier Basin
and Earaheedy Basin

Grid references refer to the Geocentric Datum of Australia
1994 (GDA94) using Map Grid Australia (MGA)
coordinates, Zone 51.

Site A (north of Yallum Bore)

Coordinates: Lat. 25°25'16"S, Long. 122°14'53"E,
STaNLEY* (SG 51-6; MGA 424400E 7188218N).

Location: Southeastern edge of a low dolerite hill, about
1.7 km from Yallum Bore on a bearing of 024°; about
3.9 km northwest of Yallum Hill.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 8 core samples of massive,
medium-grained dolerite, collected over 145 m along edge
of outcrop area.

Site B (Weld Spring)

Coordinates: Lat. 25°1'12"S, Long. 121°35'10"E, STANLEY
(SG 51-6; MGA 357307E 7232089N).

Location: Low dolerite outcrops exposed within creek bed,
about 200 m south of track, about 400 m south of Weld
Spring (Canning Stock Route well number 9).
Geological relations: Flat-lying dolerite sill intruding the
Coonabildie Formation.

Palaeomagnetic samples: 9 core samples of medium-
grained dolerite collected over 150 m within creek bed.

Site C (northwest of Midway Bore)

Coordinates: Lat. 25°4'55"S, Long. 121°42'54"E, STANLEY
(SG 51-6; MGA 370399E 7225362N).

Location: Low rubbly outcrop on south-facing slope of
low dolerite hill, 250 m north of track, 4.4 km northwest
of Midway Bore.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 9 core samples of medium-
grained dolerite collected over 130 m along an east-west
trend (approximately parallel to track).

Site D (Digby Hill)

Coordinates: Lat. 25°11'35"S, Long. 121°53"'17"E,
STANLEY (SG 51-6; MGA 387961E 7213255N).

*  Capitalized names refer to standard 1:250 000 map sheets.

Location: Low rubbly outcrop on south-facing slope
of low dolerite hill, 150 m north of track, 1.4 km
east-southeast of Humpty Doo Bore; 1.1 km west of
geochronology sample site 152661 (see below).

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 12 core samples of medium-
grained dolerite collected over 100 m along an east—west
trend (approximately parallel to track).

Site E (west of Dailys Bore)

Coordinates: Lat. 25°528"S, Long. 121°0'54"E, STANLEY
(SG 51-6; MGA 400692E 7224638N).

Location: Outcrop along small stream bed draining the
west side of dolerite hill, 150 m north of track, 2.2 km
west of Dailys Bore.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 8 core samples of fine- to
medium-grained dolerite collected over 40 m along east—
west trending stream.

Site F (south of Gap Well)

Coordinates: Lat. 25°11'38"S, Long. 122°13'19"E,
STANLEY (SG 51-6; MGA 421647E 7213393N).

Location: Low rubbly outcrop on east side of low dolerite
hill, 200 m west of track, 900 m south of Gap Well.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 9 core samples of fine- to
medium-grained dolerite collected over m along an north—
south trend.

Site G (south of Gap Well)

Coordinates: Lat. 25°11'38"S, Long. 122°13'37"E,
STANLEY (SG 51-6; MGA 422148E 7213366N).

Location: Low rubbly outcrop on west side of low dolerite
hill, 100 m east of track, 1.2 km south of Gap Well.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 5 core samples of very fine
grained dolerite collected over 100 m along a north—south
trend.



GSWA Record 2003/3

Site H (south of One Gum Bore)
Coordinates: Lat. 25°13'52"S, Long. 122°32'17"E,
STANLEY (SG 51-6; MGA 453487E 7209408N).

Location: Rubbly outcrop on southwest side of prominent
dolerite hill, 200 m east of track, 1.2 km south of One
Gum Bore.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 7 core samples of fine-grained
dolerite collected over 160 m along a northwest trend.

Site | (west of One Gum Bore)
Samples collected in two areas:

Area A

Coordinates: Lat. 25°12'47"S, Long. 122°29"2"E, STANLEY
(SG 51-6; MGA 447977E 7211389N).

Location: Low rubbly outcrop 50 m south of track, 6.5 km
west of One Gum Bore.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 6 core samples of very fine
grained dolerite collected over a 15 by 40 m area.

Area B

Coordinates: Lat. 25°12'40"S, Long. 122°28'26" E,
STANLEY (SG 51-6; MGA 446989E 7211597N).

Location: Outcrops in and adjacent to bed of creek
draining northeast slopes of prominent dolerite hill, about
200 m south of track, 1.1 km west of Area A.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 6 core samples of very fine
grained dolerite collected over 120 m along creek.

Site J (southeast of Glenayle
Homestead)

Coordinates: Lat. 25°16'34"S, Long. 122°5'53"E, STANLEY
(SG 51-6; MGA 409211E 7204221N).

Location: Outcrops in and along bed of well-incised creek
draining southwestern slopes of a prominent hill, 1.4 km
northeast of the Glenayle—Carnegie Road, 5.7 km
southeast of Glenayle Homestead.

Geological relations: Upper contact of dolerite sill
intruding the Coonabildie Formation.

Palaeomagnetic samples: 8 core samples of very fine grained
to aphanitic dolerite collected over 130 m in creek bed.

Site K (Canning Stock Route)

Coordinates: Lat. 24°55'41"S, Long. 121°36'22"E,
TrAmNOR (SG 51-2; MGA 359205E 7242347N).
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Location: 10 km south of No. 10 Well on the Canning
Stock Route.

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Palaeomagnetic samples: 8 block samples of medium-
grained dolerite, collected over 20 m along edge of
outcrop area.

Site L (south of Prenti Downs
Homestead)

Coordinates: Lat. 26°31'37"S, Long. 122°49'26"E,
KingsToN (SG 51-10; MGA 482455E 7065989N).

Location: Moderately weathered outcrops in steep gully
along creek, adjacent to southwestern side of Virgins
Road, at first curve of road south of Prenti Downs
Homestead.

Geological relations: Lower contact of basalt sill intruding
sandstone of the Princess Ranges Formation.

Palaeomagnetic samples: 7 core samples of aphanitic
basalt collected over 60 m along northeastern bank of
creek.

Geochronology sample 152661

Coordinates: Lat. 25°11'42"S, Long. 121°53'56"E,
StaNLEY (SG 51-6; MGA 389079E 7213000N).

Location: 2.5 km east-southeast of Humpty Doo Bore, on
the station track between Glenayle Homestead and Weld
Spring; 1.1 km east of palacomagnetism site D (see
above).

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Geochronology sample: About 20 kg of unweathered,
medium-grained granophyric dolerite collected from
outcrops immediately north of the station track.

Geochronology sample 171741

Coordinates: Lat. 25°11'42"S, Long. 121°53'56"E,
STANLEY (SG 51-6; MGA 389079E 7213000N).

Location: 2.5 km east-southeast of Humpty Doo Bore, on
the station track between Glenayle Homestead and Weld
Spring; 1.1 km east of palaecomagnetism site D (see
above).

Geological relations: Dolerite sill intruding the Coona-
bildie Formation.

Geochronology sample: About 20 kg of unweathered,
medium-grained granophyric dolerite collected from the
same outcrop area as palaecomagnetic samples at site K.
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Appendix 2

Sample site descriptions — Yerrida Basin

Grid references refer to the Geocentric Datum of Australia
1994 (GDA94) using Map Grid Australia (MGA)
coordinates, Zones 50 and 51.

Site A (north of North Pool)

Coordinates: Lat. 26°22'41"S, Long. 120°9'S0"E, WiLuNa
(SG 51-9; MGA 217038E 7079315N).

Location: Southwestern margin of an extensive, low
dolerite hill, 8 km north of North Pool; 300 m east of
track; bearing 280° to Telstra telecommunications tower.

Geological relations: Dolerite sill (Killara Formation)
intruding Juderina Formation.

Palaeomagnetic samples: 8 core samples of massive,
medium-grained dolerite, collected over 135 m along edge
of outcrop area.

Site B (Canning Stock Route)
Samples collected in two areas 650 m apart.

Area 1

Coordinates: Lat. 26°16'41"S, Long. 120°13'12"E, WiLUNA
(SG 51-9; MGA 222327E 7090571N).

Location: Northeast-facing slope of prominent dolerite
hill, 150 m west of Canning Stock Route (CSR), 3.8 km
along CSR from start at Wiluna North Road.

Geological relations: Dolerite sill (Killara Formation)
intruding Juderina Formation.

Palaeomagnetic samples: 6 core samples of medium-
grained dolerite collected over 70 m on east slope of hill.

Area 2

Coordinates: Lat. 26°16'52"S, Long. 120°13'26"E, WiLuna
(SG 51-9; MGA 222795E 7090232N).

Location: South-facing slope of prominent dolerite hill,
about 500 m east of CSR, 3.8 km along CSR from start
at Wiluna North Road.

Geological relations: Dolerite sill (Killara Formation)
intruding Juderina Formation.

Palaeomagnetic samples: 5 core samples of medium-
grained dolerite collected over 40 m around outcrop
blasted previously with explosives.
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Site C (Wiluna North Road)

Coordinates: Lat. 25°46'12"S, Long. 119°56'53"E,
Peak HiLL (SG 50-8; MGA 795696E 7146509N).

Location: Low rubbly outcrop area on either side of
Wiluna North Road (WNR), 106.5 km from Wiluna along
WNR.

Geological relations: Dolerite sill (Killara Formation)
intruding Maraloou Formation.

Palaeomagnetic samples: 5 core samples of medium-
grained dolerite collected over 50 m on southwestern side
of WNR; 5 core samples of medium-grained dolerite
collected over 120 m on northeastern side of WNR.

Site D (northeast of Killara Station)

Coordinates: Lat. 26°18'25"S, Long. 118°59'42"E,
GLENGARRY (SG 50-12; MGA 699201E 7088805N).

Location: Rubbly outcrop along north-trending creek,
about 500 m east of north—south station track, 6 km east-
northeast of Killara Homestead.

Geological relations: Mafic sill or flow of Killara
Formation.

Palaeomagnetic samples: 14 core samples of fine-grained
basalt collected over 200 m along both sides of creek and
in adjacent low ground and north- and northeast-facing
slopes.
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