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Preface

The Southern Cross district in the Yilgarn Craton is a
historic mining area with significant economic gold, nickel
and iron deposits. These deposits share the characteristic
that their formation is closely linked with the structural
setting of the Southern Cross greenstone belt at regional
or deposit scale, or both.

This field guide describes operating gold, nickel and iron
mines at Koolyanobbing, Marvel Loch and the Forrestania
area and investigates their structural and stratigraphic
context. It also describes several outcrops that represent
examples of structural styles and rock types common in
the area.

Much of the new data presented here are the outcome of
ARC Linkage Project LP100100647: Tectonic evolution
and lode gold mineralization in the Southern Cross district,
Yilgarn Craton: a study of the Meso- to Neo-archean
missing link. We also gratefully acknowledge support
from St Barbara Ltd, Western Areas NL, and Cliffs Natural
Resources.

Yilgarn Craton

Introduction

by MP Doublier

The Yilgarn Craton of Western Australia is a Paleo- to
Neo-archean craton composed of various terranes that can
be distinguished based on geochemical, geochronological
and stratigraphic criteria (Fig. 1; Cassidy et al., 2006).

1 Centre for Exploration Targeting, The University of Western Australia,
35 Stirling Highway, M006, Crawley WA 6009

2 The Walter Witt Experience, 122 Edward Street, Bedford WA 6052
3 St Barbara Limited, 1205 Hay Street, West Perth WA 6005

The South West and Narryer Terranes contain the overall
lowest proportion of greenstones and are the only terranes
where widespread granulite facies metamorphism is
exposed. Together with the Youanmi Terrane, they form
the western Yilgarn, which is separated from the Eastern
Goldfields Superterrane by the crustal-scale Ida Fault
(Drummond et al., 2000).

The Youanmi Terrane and the Eastern Goldfields
Superterrane contain substantial greenstone belts, which
are separated by granite and gneiss. The Youanmi Terrane
comprises the Murchison and Southern Cross Domains,
and the Eastern Goldfields Superterrane is subdivided,
from west to east, into the Kalgoorlie, Kurnalpi, Burtville
and Yamarna Terranes (Cassidy et al., 2006; Pawley et al.,
2012).

Isotopic data

Isotopic data reveal differences in the crustal evolution
of the different crustal blocks: Sm—Nd model ages are
younger in the Eastern Goldfields Superterrane, and
overall older and more heterogeneous in the western
Yilgarn, with the oldest model ages mainly observed
in the Narryer Terrane (Fig. 2; Champion and Cassidy,
2007). The Sm—Nd results are in accordance with more
recent Lu—Hf data (Fig. 3). Zircons from the Youanmi
Terrane are typically characterized by negative ¢Hf values,
which suggests that the sources to the host magmas
have undergone crustal reworking. In contrast, the
mainly positive ¢eHf values from the Eastern Goldfields
Superterrane indicate juvenile source input (Wyche et al.,
2012; Mole et al., 2011).

Taken together, the isotopic evidence supports the proposal
that the Youanmi Terrane forms part of a proto-Yilgarn
Craton, to which the elements of the Eastern Goldfields
Superterrane were accreted (i.e. Czarnota et al., 2010).

Supracrustal rock record

The oldest supracrustal rocks identified in the Yilgarn
Craton are from the Narryer Terrane, where Rasmussen
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Figure 1.
et al. (2012)

et al. (2010) dated secondary xenotime and monazite
in banded iron-formation (BIF) at c. 3080 Ma, which
provides a minimum depositional age for these rocks.

Supracrustal rocks from the South West Terrane are
typically preserved as isolated greenstone belts (Wilde,
2001). The rock record includes quartzites with old detrital
zircons, similar to those in the Narryer and Youanmi
Terranes, but with a different provenance (Pidgeon et al.,
2010). However, there are also supracrustal rocks that
range in age from 2715 to 2670 Ma (Wilde and Pidgeon,
1986; Allibone et al., 1998).

The spatial distribution and timing of greenstone
formation in the Youanmi Terrane and the Eastern
Goldfields Superterrane has recently been summarized
by Pawley et al. (2012). In Fig. 4, the Youanmi Terrane
is represented by the Murchison Domain, for which
a detailed regional stratigraphy has been established
(e.g. Van Kranendonk and Ivanic, 2009). The Southern
Cross Domain will be discussed separately (see section

Terrane subdivision of the Yilgarn Craton after Cassidy et al. (2006), modified by Pawley et al. (2009); from Wyche

‘Southern Cross Domain’). Apart from the easternmost
Yamarna Terrane, which is relatively poorly exposed, all
terranes record an early phase of greenstone deposition
22900 Ma, and a hiatus in greenstone deposition between
c. 2900 Ma and >2820 Ma (Pawley et al., 2012; Van
Kranendonk et al., 2013). From this time onwards, the
record between the Youanmi Terrane and the Eastern
Goldfields Superterrane is different in character, except
for the Burtville Terrane, which shows affinities with
the Youanmi Terrane. Between c. 2820 and 2710 Ma,
three greenstone groups were deposited in the Murchison
Domain in (ultra)mafic to felsic cycles with breaks
in magmatism reflected by deposition of BIF (Van
Kranendonk et al., 2013). The oldest of these cycles
(Norie Group) is synchronous to the emplacement of
large, layered mafic—ultramafic igneous complexes such
as the Windimurra and Narndee Igneous Complexes of
Ivanic et al. (2010). It is notable that these complexes are
located within a corridor of young Sm—Nd model ages
(Fig. 2). Greenstones and mafic intrusions ranging from
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2815-2785 Ma have also been described in the Burtville
Terrane (Pawley et al., 2012). This rock record has
been interpreted to reflect a mantle plume event at
2820-2790 Ma (Ivanic et al., 2010; Van Kranendonk
et al., 2013).

Widespread greenstone deposition in the Kalgoorlie
and Kurnalpi Terranes at 2720-2710 Ma shows some
time overlap with the Glen Group of the Murchison
(2735-2710 Ma). The Kalgoorlie Terrane greenstone
stratigraphy has been subdivided into a 2710-2690 Ma
tholeiitic to komatiitic Kambalda Sequence (Krapez
and Hand, 2008), which is attributed to a second,
major plume event (Campbell and Hill, 1988). The
Kambalda Sequence is overlain by the Kalgoorlie
Sequence. The latter mainly consists of felsic volcanic
and volcaniclastic rocks, and conglomerates, which
have been attributed by Squire et al. (2010) to two
depositional cycles. The older cycle deposited between
c. 2690 and 2670 Ma is the Black Flag Group, which
hosts economically important dolerite bodies such as
the Golden Mile Dolerite. The second cycle includes the
Merougil Group, which was deposited between c. 2670 and
2658 Ma. The supracrustal rocks of the Kurnalpi Terrane
include 2720-2700 Ma mafic volcanic rocks and calc-
alkaline complexes and 2692-2680 Ma bimodal (basalt—
rhyolite) volcanic complexes and associated intrusive and
sedimentary rocks (Barley et al., 2008).

Meso-archean

The Kurrawang Formation is the youngest sedimentary
unit (2658-2655 Ma) and consists of polymictic
conglomerates and sandstones (Squire et al., 2010). These
rocks, commonly called ‘late basins’ (Krapez et al., 2008),
overlie all other greenstones in the Eastern Goldfields
Superterrane.

Granite magmatism

Granites and granitic gneisses occupy about 75% of the
Yilgarn Craton and the rock record is overwhelmingly
dominated by the youngest period of magmatism between
c. 2720 and 2620 Ma (Figs 4 and 5). This record is biased
due to the increasingly poor preservation potential of
granite bodies with increasing age during periods of
crustal reworking, a process which is evident from the
isotopic record and granite geochemistry (Champion
and Cassidy, 2002). Inherited zircon grains have proven
invaluable in helping to decipher periods of magmatism
and crustal melting. Recent compilations of magmatic
and inherited granite geochronology show that, although
granites and gneisses older than c. 2800 Ma are poorly
preserved (Pawley et al., 2012), granite magmatism of
this age and older is well documented by the inherited
zircon record (Mole et al., 2012; Van Kranendonk et
al., 2013). Although some magmatic events can be
recognized across the whole of the Yilgarn Craton, other

Neo-archean
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Simplified time—space plot of the major greenstone and granite events for the Youanmi

(mainly Murchison) and Eastern Goldfields Superterrane (after Pawley et al., 2012). Note
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magmatic pulses may vary between crustal blocks, or
are restricted to certain areas. For example, a hiatus of
magmatism between c. 2890 and 2830 Ma is observed in
the Murchison Domain (Van Kranendonk et al., 2013),
a period where felsic magmatism in the Southern Cross
Domain and the South West Terrane is well documented
(Mole et al., 2012). Typically, the periods of extensive
greenstone formation, which some authors have linked to
mantle plume events (Van Kranendonk et al., 2013), are
accompanied by granitic magmatism. This magmatism
is either contemporaneous with greenstone deposition
(Eastern Goldfields Superterrane), or slightly delayed with
respect to the commencement of greenstone deposition
(Murchison Domain; Van Kranendonk et al., 2013).

Based mainly on data from the Youanmi Terrane and the
Eastern Goldfields Superterrane, the Yilgarn granites
have been subdivided into five groups using geochemical,
petrological and geochronological criteria (Champion and
Sheraton 1997; Champion and Cassidy, 2002): i) high-Ca
granites; ii) low-Ca granites; (iii) high-HFSE (high high
field strength elements) granites; (iv) mafic granites; and
(v) syenites. The dominant group is the high-Ca group in
all provinces, which typically comprises more than 50% of
the recognized granites, followed by the low-Ca granites.
Both groups may form more than 80% of the granites
within the respective areas (Champion et al., 2002). The
authors show that the timing of the different groups varies
across the craton, with the Eastern Goldfields Superterrane
being distinctly different from the Youanmi Terrane
(Fig. 6; Champion et al., 2002). From a petrogenetic
point of view, the widespread distribution of the low-Ca
granite magmatism between c. 2650 and 2630 Ma is a
very important event for the tectonic evolution of the
craton: the geochemical character of these granites is
most consistent with melting under moderate pressures
(<10 kbar) from reworked continental crust (Champion
and Cassidy, 2002). Granites of such affinities are usually
found in regions undergoing extension or attenuation, or
regions above mantle hot spots (Champion et al., 2002).
This is remarkably different from the typically older high-
Ca granites, which indicate melting at higher pressures
(10-15 kbar), either deep within a thickened crust, or
possibly from melting of a subducting slab (Champion and
Cassidy, 2002) — both scenarios linked to contractional
tectonics. Hence, the transition from high-Ca to low-Ca
granite magmatism possibly reflects a (craton-scale)
change in the overall tectonic environment (Champion
and Cassidy, 2002).
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by MP Doublier, N Thébaud, DR Mole, and SS Romano

Stratigraphy

Compared to adjacent terranes and domains, most of the
upper crustal record in the Southern Cross Domain lacks
suitable rocks for geochronology (i.e. felsic volcanic
rocks), and hence establishment of a stratigraphy over
much of the area has proven difficult. In what follows, a
brief description of the lithostratigraphy, together with a
compilation of existing geochronological constraints, is
provided for several greenstone belts in the central and
southern part of the domain. In all the greenstone belts, the
rocks are metamorphosed to at least greenschist facies, and
for clarity the ‘meta’ prefix is omitted.

The central Southern Cross Domain
(Marda-Diemals greenstone belt)

In the northern Southern Cross Domain, the lowest
exposed part of the greenstone succession is represented
by quartzites or quartz-rich sedimentary rocks, which
typically contain old detrital zircons up to c. 4350 Ma, and
are either in faulted contact with, or intruded by, younger
granites (Wyche et al., 2004).

In the Marda-Diemals greenstone belt (Fig. 1) in the
central part of the domain, Chen et al. (2003) described
two greenstone successions, which are considered as
representative for wider parts of the northern Southern
Cross Domain (Riganti et al., 2010). The lower succession
consists of a lower association dominated by basalt,
overlain by a middle association characterized by a thick
unit of chemical sedimentary rocks (i.e. BIF and chert),
and an upper association with a higher proportion of
komatiitic basalt, intercalated shales and gabbros in the
Diemals area (Fig. 7). There are no direct depositional
ages on the lower succession, but an upper age constraint
is provided by a gabbroic sill (Grass Flat Gabbro), which
intruded into cherts and overlying komatiitic basalts at
c. 2796 Ma (GSWA 185990, Wingate et al., 2011).

The upper succession is formed by the c. 2732 Ma
Marda Complex (GSWA 168960, Nelson 2001) and the
Diemals Formation, which both rest uncomformably
upon the lower succession. The lower part of the former
consists of conglomerates, sandstones and siltstones
and is conformably overlain by rhyolite, andesite and
subordinate dacite (Fig. 8; Chen et al., 2003). The Diemals
Formation contains various clastic sedimentary rocks
(Fig. 8). A westward-fining grain size in the lower part
of the formation has been taken to indicate an alluvial
to fluviatile depositional environment in the eastern part
and a lacustrine to shallow-marine environment in the
western part (Chen et al., 2003; Morris et al., 2007). While
the conglomerates in the lower part of the succession
have a compositional affinity with the greenstones, the
sedimentary rocks in the upper part record a substantial
contribution from granitic rocks, and immature lithic
sandstones suggesting rapid deposition in an unstable
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tectonic environment (Chen et al., 2003; Morris et al.,
2007). Analysis of detrital zircons from a sandstone of
the Diemals Formation yielded a range of SHRIMP U-Pb
ages and a likely maximum depositional age of c. 2701 Ma
(GSWA 185988, Wingate et al., 2012a), which indicates
that deposition of the Diemals Formation was younger
than formation of the Marda Complex.

Koolyanobbing greenstone belt

The age of the Koolyanobbing greenstone belt to the south
of the Marda—Diemals greenstone belt is unconstrained.
The greenstone sequence does not include equivalents of
either Marda Complex or Diemals Formation and recent
work by Angerer et al. (2012) suggests the existence of
four magmatic cycles separated by BIF horizons (see
section ‘Locality 3°).

The southern Southern Cross Domain

Based on ages of felsic intrusive rocks (‘porphyries’)
within the lower parts of the greenstone succession, the
Southern Cross — Forrestania and the Lake Johnston
greenstone belts have been interpreted to be older than
2900 Ma (Wang et al., 1996; Mueller and McNaughton,
2000). Current collaborative work between the
Geological Survey of Western Australia (GSWA) and
the Centre for Exploration Targeting (CET) has provided
increasing evidence that the supracrustal rocks of
these greenstone belts are at least partly younger than
c. 2900 Ma. The rocks of this area have been typically
metamorphosed in the amphibolite facies.

Lake Johnston greenstone belt

A stratigraphy for the Lake Johnston greenstone belt
in the southeastern part of the domain, first proposed
by Gower and Bunting (1976), was recently refined by
Heggie et al. (2012) and Romano et al. (2010). The lowest
part of the stratigraphy is represented by the Maggie
Hays Formation, which consists of a thick package of
basalt in its lower part, overlain by a sequence of mafic
volcaniclastic rocks, hyaloclastites and thin lava flows,
interbedded with minor quartz-rich sedimentary rocks
(Fig. 9; Romano et al., 2010). The package is intruded by
numerous dolerite dykes, quartzofeldspathic sills, and by
sills of the mafic—ultramafic intrusive rocks of the Lake
Medcalf Igneous Complex, which is mainly exposed
in the southern part of the belt. The overlying Honman
Formation grades from dacitic to rhyolitic volcanic to
volcaniclastic rocks into a clastic sedimentary package. At
the top of the Honman Formation is a prominent package
of dominantly chemical sedimentary rocks with quartzite,
chert and BIF. Intrusive and extrusive ultramafic rocks
and komatiites within and above the Honman Formation
are likely a separate formation (Romano et al., 2013).
One of the intrusive units, the ‘Central Ultramafic Unit’
(Heggie et al., 2012; Buck et al., 1998), hosts the Maggie
Hays nickel deposit. The uppermost unit of the succession
is the Glasse Formation, which is dominated by massive
basalt (Fig. 9).
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ultramafic intrusions

2903 Ma* Honman Formation
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2921 Ma*
Q . .
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Figure 9. Lithostratigraphy of the Lake Johnston greenstone

belt (modified from Heggie et al., 2012)

Felsic volcaniclastic rocks of the Honman Formation
yielded a maximum depositional age of c. 2873 Ma
(SHRIMP U-Pb; Thébaud et al., 2009; Romano et al., in
revision), which is substantially younger than the previous
age constraints obtained on porphyritic felsic rocks from
the Honman Formation dated at c. 2912 and 2903 Ma
(Wang et al., 1996). The authors interpreted a young
(c. 2858 Ma) zircon age component in Wang et al. (1996)
to reflect a metamorphic event. This interpretation has
been challenged by Romano et al. (2010), who pointed
out that Th/U ratios of zircons are not conclusive evidence
of metamorphic growth. Regardless, the upper part of the
Honman Formation and overlying Glasse Formation must
have been deposited after 2873 Ma.

If, as proposed by Heggie et al. (2012), the ultramafic units
within the Honman Formation are intrusive equivalents of
the effusive komatiites on top of the Honman Formation,
these new geochronological data suggest that the effusive
komatiites and intrusive ultramafic rocks and associated
mineralization are younger than 2873 Ma (Romano et al.,
2010). A minimum age for the entire succession is given
by intrusive granites at c¢. 2770 Ma (Romano et al., 2010).

Southern Cross — Forrestania greenstone belt

A detailed stratigraphy for the Southern Cross greenstone
belt and the Forrestania greenstone belt, which represents
its lateral continuity to the south, is difficult to establish
due to its complex structural framework. The sequence
of the former broadly consists of a lower volcanic
succession, up to 5 km thick, overlain by at least 2 km
of clastic sediments (Fig. 10). The lower part of the
volcanic succession consists of tholeiitic and komatiitic



GSWA Record 2013/11

basalt, and the upper part is dominated by komatiites
and other ultramafic rocks. Several thin units of BIF are
interbedded with the volcanic rocks, and minor amounts
of gabbro have intruded the sequence. The basal part of
the sedimentary package is represented by black mudstone
(‘black shale’), which is overlain by a mixed succession
of psammitic and pelitic units, and minor quartzite and
conglomerate.

Based on SHRIMP U-Pb ages of zircons from ‘altered
quartz porphyry sills’ (Mueller and McNaughton,
2000) at the Southern Star (c. 2934 Ma; interpreted as
a magmatic age) and Copperhead deposits (c. 2912 Ma;
interpreted as a minimum age), it was until recently
thought that the Southern Cross greenstones were
deposited prior to 2900 Ma. However, a new SHRIMP
U-Pb zircon age from the sedimentary succession,
west of the Hopes Hill mine, indicates a maximum
depositional age of c. 2700 Ma (Thébaud et al., in prep.).
This date suggests that at least the upper part of the
stratigraphy is considerably younger than 2900 Ma, and
possibly an equivalent of the Diemals Formation in the
Marda—Diemals greenstone belt.

Like the Southern Cross greenstone belt, the stratigraphy
of the Forrestania greenstone belt is affected by structural
complexity. The rock record comprises a lower volcanic/
magmatic component and an upper sedimentary
succession (Chin et al., 1984), which represents the
lateral continuation of the upper succession at Southern
Cross (Gee, 1995). The lower succession is predominantly
mafic but contains at least four units of komatiitic rocks,
partly intercalated with BIF (Perring et al., 1997) and
clastic sediments. A recent study of the geochemistry
of ultramafic units in the Southern Cross greenstone
belt suggests that not all units within the Forrestania
belt have obvious correlatives in the Southern Cross
greenstone belt (Thébaud and Barnes, 2012). This could
indicate a different stratigraphic component within the
Forrestania belt. This is supported by the observation
that clastic sediments are intercalated within the lower
sequence (see section on Flying Fox deposit in ‘Locality
1’ for an example), although the contact relationships are
not always clear, and contacts with the magmatic rocks
are at least partly tectonic. A sample from the Spotted
Quoll mine in the Forrestania greenstone belt yielded
a maximum depositional age of c. 2832 Ma (Doublier
et al., 2012) that, although substantially older than the
maximum depositional ages from the Southern Cross
sediments (Thébaud and Miller, 2009), also indicates
sedimentation (and presumably mafic—ultramafic
magmatism) after c. 2830 Ma.

Ravensthorpe greenstone belt

The Ravensthorpe greenstone belt is the southernmost
belt in the Southern Cross Domain and consists of
three tectonostratigraphic units with a complex tectono-
metamorphic history (Witt, 1998, 1999): during an
accretionary event, the Ravensthorpe ‘Terrane’ and
the Cocanarup greenstones were thrust eastward over
the Carlingup ‘Terrane’. The supracrustal Archean
rock record differs between the units (e.g. Witt, 1997).

Geological setting of mineral deposits in the Southern Cross district
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The Ravensthorpe ‘Terrane’ consists of the Manyutup
Tonalite Complex and the Annabelle Volcanics, which
are dominated by andesitic to dacitic agglomerates and
tuffs, and minor basalts. The Cocanarup greenstones are
dominated by sedimentary rocks with minor BIF and
mafic and ultramafic rocks. For the Carlingup ‘Terrane’,
Witt (1997) proposed a formal stratigraphy (Fig. 11).
In this scheme, shales, siltstones, lithic sandstones and
several BIF units of the Chester Formation are in faulted
contact with the overlying Bandalup Ultramafics. The
upper part of the stratigraphy is formed by the Maydon
Basalt and the sedimentary Hatfield Formation, which
contains minor dacitic volcanic and volcaniclastic
rocks. The stratigraphic relationship between the
tectonostratigraphic units, as well as the stratigraphic
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Figure 11. Lithostratigraphy of the Carlingup ‘Terrane’ (after

Witt, 1998)
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context of the Ravensthorpe greenstone belt within the
Southern Cross Domain is uncertain. However, a rhyolite
from the Carlingup “Terrane’, which could not be assigned
to a formal unit, yielded a U-Pb zircon date of c. 2958
(Nelson, 1995). This date is interpreted as the age of
deposition, and indicates that at least parts of the sequence
are older than 2900 Ma. This is the only result from the
supracrustal rocks of the Ravensthorpe greenstone belt;
hence correlations with other greenstone belts remain
speculative.

Structural evolution
of the Southern Cross
greenstone belt

by MP Doublier, N Thébaud, DR Mole, and SS Romano

The Southern Cross — Forrestania greenstone belt in
the southern Southern Cross Domain is about 300 km
long. A prominent feature of the regional geology is the
preservation of several granite—gneiss domes: the Ghooli,
Mt Rankin and Parker domes. The greenstones within
the belt are mainly metamorphosed in the amphibolite
facies and the metamorphic grade decreases away from
the granite—greenstone contacts (Fig. 12; e.g. Ahmat,
1986; Dalstra et al., 1999). The Ghooli dome is the largest
and best studied of the dome structures. It is a composite
granite—gneiss dome and, based on the foliation pattern,
Dalstra et al. (1998) distinguished three subdomes. These
are, from north to south: the Hamersley dome, the Lake
Deborah (half-) dome, and the Ghooli dome (Fig. 13). The
main foliation in the greenstones largely trends subparallel
to the dome-greenstone contacts, as does the marginal
foliation within the dome structures. The main structural
grain trends north-northwesterly.

The structural inventory and evolution of the area has
been studied by several authors (e.g. Bloem et al., 1994,
1997; Dalstra and Ridley, 1995; Dalstra et al., 1998; Witt
et al., 2001). The area underwent polyphase deformation
and the different views on the deformation history have
been summarized in Fig. 14 (Witt et al., 2001). Although
the schemes are broadly similar, several differences are
evident. The only other region where the early north—south
compressional event, proposed by Witt et al. (2001), has
been described is the Marda—Diemals belt to the north
(Dalstra and Ridley, 1995; Chen et al., 2003). Also, Bloem
et al. (1997) interpreted doming to be synchronous with
their D, folding during east—west compression, whereas
Witt et al. (2001) suggest that doming postdates folding
(D, and D, in their scheme), based on the observation that
F, folds are reoriented at the northern end of the Parker
dome. Although the structural inventory is complex in
detail, the sequence of deformation events can be roughly
summarized as follows:

» Early deformation (‘D,’): thrusting and formation
of large-scale upright to recumbent folds during
north—south compression. As mentioned above, this
deformation is still a subject of debate (Witt et al.,
2001; Bloem et al., 1994, 1997).
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Figure 12. Metamorphic pattern and dome structures in the
Southern Cross — Forrestania greenstone belt
(summarized after Ahmat, 1986; Keats, 1991; Dalstra
et al., 1998; Mueller et al., 2004)

e D,: small to large scale (first order at km scale), tight
to isoclinal, similar folds, with north-northwesterly
trending axial planes and variable plunges. The
regional foliation (S,) is attributed to this deformation
event.

e D, tightening of earlier folds, formation of F,
folds (Bloem et al., 1997; Witt et al., 2001). Strain
partitioning and formation of ductile shear zones,
commonly subparallel to S, and bedding.

e D,: formation of brittle-ductile faults: sinistral
(270-290°) and dextral (030-050°) shear senses.
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As well as timing, the mechanism of doming is a matter
of debate. Several authors favour diapirism as the main
driving force for the doming, synchronous to regional
east-northeast—west-southwest directed shortening
(Bloem et al., 1997; Dalstra et al., 1998). Alternatively,
the granite domes have been interpreted as thrust sheets of
limited thickness, with the domal pattern caused by fold
interference (Witt et al., 2001).

The polyphase deformation and doming led to an overall
complex geology, which is well illustrated in the area
covered by the SOUTHERN Cross 1:100 000 map sheet
(Fig. 15). In this area, two separate greenstone branches
converge towards north. The belt varies substantially in
thickness, with a ‘bottleneck’ north of Southern Cross
township. Some large-scale folds are preserved. Major
shear zones separate lithotectonic segments and may cause
the termination of substantial rock packages. As shown
in cross-section (Fig. 16), the lithologies and shear zones
have an overall steep orientation. Potential field modelling
suggests that the greenstone sequence is cut at depths of
2-3 km by granites of the post-2640 Ma suite. Related
pegmatoidal sills and dykes are common in some deposits
(see ‘“Timing of gold mineralization’ below).

Some of the shear zones focus fluid flow and
mineralization. Particularly important are the mineralized
Corinthia—Treasury Shear Zone and the corridor to the
west, which is marked by a horizon of BIF. This area
is coincident with what has been termed the Corinthia—
Frasers Shear Zone in earlier literature (Bloem et al.,
1994, 1997) and is host to a whole range of gold deposits
(Fig. 17).

The structural evolution of the Koolyanobbing and
Forrestania areas is described in the respective sections
below.

Felsic magmatism of the
Ghooli dome

by MP Doublier, N Thébaud, DR Mole, MTD Wingate,
and CL Kirkland

The Ghooli dome and surrounding areas record a
protracted history of magmatic activity, from c. 2775 to
2625 Ma (Dalstra et al., 1998; Qiu et al., 1999; Mueller
and McNaughton, 2000; Mole et al., 2012; Wingate et
al., 2012b; Thébaud et al., in prep.). Within the dome, the
spatial distribution of granite crystallization ages (Fig.
18) forms a concentric pattern with ages less than 2700
Ma northwest of Koolyanobbing, in the Lake Deborah
subdome from Dalstra et al. (1998), surrounded by older
rocks (>2700 Ma) in the northern, western and southern
parts. This distribution of magmatic ages is consistent
with the foliation pattern, suggesting that the Lake
Deborah subdome represents a ‘half-dome’ (Fig. 13;
Dalstra et al., 1998). The concentric age pattern of the
dome is cut by the Koolyanobbing Shear Zone, suggesting
that the shear zone postdates the doming process. The
shear zone itself is intruded by the c. 2656 Ma, post-
kinematic Lake Seabrook granite (Qiu et al., 1999),
which provides a minimum age for the doming (Fig. 19).
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Proposed new scheme

Bloem et al. (1997)

Dalstra and Ridley (1995)

Bloem et al. (1994)

D, North-south
compression:

Low-angle thrust faults and
recumbent folds. F, folds locally
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except in the Banker Saddle

D, East-west compression:
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recumbent folds. On the west
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and fold axes are
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emplacement of Ghooli and
Parker domes:Tightening of F,
and F, folds as strain is
partitioned around granitoid
domes. NNW upright folds in
the Banker Saddle (e.g. Lakes
domain)

D, Continued east-west
compression: Partitioning of
strain around the Ghooli and
Parker domes. Thrusting of the
Parker Domain and Lakes
Domain over the
Moonargidding Domain and the
Jilbadji Domain, respectively.
WNW sinistral, brittle—ductile
faults, especially near the SW
corner of the Ghooli dome

D, Tight to isoclinal folds with
NW axial planar foliation and
variable plunges

D, Open folds with 50-70°SE
plunge between Ghooli and
Parker domes; zones of ductile
shear parallel to S, and
bedding, shallow to moderate
plunging L, (includes
Frasers—Corinthia Shear Zone);
sinistral shear bands
(290-300°); dextral shear
bands (000-030°)

D, Brittle—ductile faults;
sinistral (270-290°) and dextral
(030-050°) shear bands

D, North-south
compression:

East—west, tight, upright folds
(Marda) and recumbent,
isoclinal folds (Diemals)

D, East-west compression:
Upright north—south folds
(oldest deformation in the
Southern Cross belt)

D, NE-SW dextral ductile
shear zones (Evanston) N-S
normal ductile shear zones
(Jackson) E-W sinistral,
reverse brittle—shear ductile
zones (Marda)

D, Small-scale brittle faults
(NW-SE and NNE-SSW)

D, Upright, tight folds with
NW axial planes, plunge
shallowly NW at Southern
Cross

D, Tightening of D, folds;
ductile shear zones (320—-340°);
sinistral shear bands
(290-300°); dextral shear
bands (000—030°)

D, Brittle—ductile faults;
sinistral (270-290°) and dextral
(030-050°) shear bands

MDO87

01.04.14

Figure 14. Correlation of deformation histories for the Southern Cross greenstone belt (after Witt et al., 2001)
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A maximum age for the doming is provided by the young
sedimentary rocks (c. 2700 Ma). These rocks exhibit the
main greenstone deformation, which is interpreted to
either predate or be synchronous with the doming process
(Witt et al., 2001; Bloem et al., 1997).

Granites younger than 2635 Ma have been detected across
the area, and are synchronous with gold mineralization
(see ‘Timing of gold mineralization’ below). Both their
emplacement and the mineralization postdate the doming
(and the main deformation) by at least 20 Ma.

The geochronological data also reveal some differences
between the Ghooli dome and its surroundings. The older
granites and gneisses within the dome range between
c. 2775 and 2700 Ma (Fig. 19). Granites of this age have
so far not been found in the surrounding granite terrain.
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Figure 18. Magmatic ages and locations of geochronology
samples from granites and gneisses in the Southern
Cross area
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Apparently, the Ghooli dome exposes older (deeper?)
crustal levels. Within the dome, a period of increased
magmatic activity is observed between c. 2725 and
2680 Ma. Similar ages are well known from other parts of
the Yilgarn Craton (Fig. 4).

Ghooli dome Adjacent to Ghooli

,?\‘]c[:e
( a)/
2625

2650

2675

2700

2725

2750

2775

2800

GSWA168956
GSWA205915
UWA121509
GSWA205917
GSWA205913
CDH383
95-YQ-NW
98967102E
GSWA205919
GSWA199023
GSWA199043
GSWA205914
GSWA182711

* SHRIMP U-Pb on zircon (Qiu et al 1999; Mueller &
McNaughton 2000; Dalstra et al. 1998)
SHRIMP U-Pb on zircon; recent data (Mole et al.,

2012; Wingate et al., 2012; Thébaud et al., in prep.)
A Pb/Pb isochron (Qiu et al., 1999)
MDO109

Gold mineralization
Youngest sediments

Overprint Kooly. SZ
01.04.14

Figure 19. Compilation of geochronology data from the
Southern Cross area, with respect to gold
mineralization and dome emplacement

Styles of gold mineralization

by W Witt (for Sons of Gwalia)

The Southern Cross greenstone belt is a traditional
gold-mining area, and contains numerous historical
and more recent deposits (for an overview, see Keats,
1991). Detailed observations from various deposits in the
Southern Cross district allow us to distinguish two styles
of gold mineralization in the Southern Cross greenstones.

Model 1 deposits are shear-hosted deposits in which
mineralized veins are folded conformably within the
ductile fabric of the shear zone (Figs 20 and 21). They
are commonly located on the contacts between komatiitic
basalt—ultramafic rocks and either sedimentary or mafic
rocks. Several deposits of this type are located along a
shear zone (Corinthia—Treasury Shear Zone) close to the
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western margin of the Ghooli dome. They include Frasers,
Polaris South, Pilot, Hopes Hill, Triad and Treasury (Fig.
17). Other deposits of this type are located on other ductile
shear zones and include Marvel Loch, Transvaal and
Yilgarn Star (Witt et al., 2001).

Model 2 deposits are brittle-vein deposits hosted by BIF,
in which the veins cut and therefore postdate bedding,
metamorphic banding and folding (Figs 22 and 23). An
important corridor with this style of deposit lies along a
specific BIF unit to the west of the Corinthia—Treasury
Shear Zone. Deposits include Golden Pig, Cornishman,
and Glendower, and possibly Lenneburg and Corinthia
in the north. This area (i.e. the mineralized Corinthia—
Treasury Shear Zone and the corridor which hosts Model
2 deposits to the west) is coincident with what has been
termed the Corinthia—Frasers Shear Zone in earlier
literature (Bloem et al., 1994, 1997). In Model 2 deposits,
rheological contrasts between competent iron-formation
and weak hangingwall ultramafic and footwall-altered
mafic schist promoted brittle fracture within the iron
formation. Fracture may also have been promoted where
the BIF is intersected by north-northeasterly striking
faults (Fig. 17; e.g. Achilles, Axehandle). Other Model 2
deposits within the Southern Cross greenstone belt include
Great Victoria, Nevoria, and Mount Rankin and Jaguar in
the westernmost part of the belt (Fig. 17; Keats, 1991).

Geochronological constraints
on gold mineralization

by MP Doublier, N Thébaud, MTD Wingate, and
CL Kirkland

The timing of gold mineralization in the Southern Cross
area has been the subject of several isotopic investigations.
A first age constraint was provided by Bloem et al. (1995),
who dated crystallization of a weakly deformed pegmatite
from the Corinthia deposit at 2620 + 6 Ma (Pb-Pb
isochron age). These authors suggested that the pegmatite
was affected by the latest shearing along the Corinthia—
Treasury Shear Zone and, based on structural criteria, that
the formation of the shear zone was synchronous with gold
mineralization. They interpreted the c. 2620 Ma date to
reflect either gold mineralization, or at least the minimum
age for that mineralization (Fig. 24).

A direct age for the mineralization was provided by
Mueller et al. (2004), who dated an allanite inclusion
in garnet (TIMS U-Pb) at 2635.7 + 1.2 Ma. The dated
mineral assemblage was interpreted to form part of a
metasomatic (‘skarn’) ore coeval with gold mineralization.
This result is within error of a scheelite—almandine Pb—Pb
isochron date from the same deposit (2630 = 13 Ma;
Mueller at al., 2004). The Nevoria orebodies are cut by
pegmatites derived from underlying granite. The granite
postdates the mineralization, and is dated at 2634 + 4 Ma
(SHRIMP U-Pb zircon; Qiu et al., 1999).

Geological setting of mineral deposits in the Southern Cross district
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A drillcore sample from a metamonzogranite dyke
at Marvel Loch yielded a SHRIMP U-Pb zircon
crystallization age of 2631 + 3 Ma (GSWA 199043,
Wingate et al., 2012b). The granite, which is largely
undeformed and crosscuts the regional foliation in the
greenstones, develops a solid state fabric near the Marvel
Loch Shear Zone. It is interpreted to have been emplaced
during the final stage of ductile deformation along this
shear zone, which is the principal host structure to the
Marvel Loch deposit. Granites, similar to those dated, are
widespread in the deposit and are interpreted to be late
syn- to post-mineralization (Mueller, 1991).

Collectively, the data indicate a mineralization event
between c. 2635 and 2630 Ma, synchronous with the
granite magmatism and the final ductile shearing along
the Marvel Loch Shear Zone. A second mineralization
event, about 10 million years later, might be inferred from
the Corinthia deposit, although the timing relationship
between the dated pegmatite and mineralization is
ambiguous (Bloem et al., 1995). Older mineralization
events cannot at present be ruled out.

A period of thermal activity, magmatism and fluid flow
younger than c. 2635 Ma is suggested by a metadolerite
sample from the Transvaal deposit. Zircons from this
metadolerite have low Th/U ratios (<0.2), which could
indicate a metamorphic (i.e. non-magmatic) origin or
competition during igneous crystallization with a thorium-
sequestering phase.

Locality descriptions

A geographic overview of the field trip localities is shown
in Figure 25.

Locality 1: the Flying Fox Ni-Cu-
PGE komatiite-hosted deposit,
Forrestania greenstone belt

by J Collins and TC McCuaig

Geological setting

The Flying Fox nickel deposit is located in a narrow
curvilinear belt bounded by gneiss and intruded by
granitoid rocks located in the Forrestania greenstone
belt, Youanmi Terrane within the Archean Yilgarn Craton
of Western Australia (Perring et al., 1996; Frost, 2003;
Fig. 26). The belt is located about 350 km east-southeast
of Perth, and is the southern extension of the Southern
Cross greenstone belt, Southern Cross Domain, Youanmi
Terrane in the Archean Yilgarn Block (Cassidy et al., 2006;
Chin et al., 1984; Gee, 1979; Porter and McKay, 1981).
The belt trends in a northerly direction over a length of
250 km and ranges in width from 5 to 30 km.
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Figure 20. Vector diagram of a generic Model 1 deposit, displaying various geochemical, mineralogical and structural

parameters across a Model 1 shear-zone-hosted deposit
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TRANSVAAL STYLE MARVEL LOCH STYLE YILGARN STAR STYLE EDNA MAY STYLE
w El (W PLAN 2 El (W PLAN 3 El (W PLAN 4 E

1. Irregularities within shear zone, 2. Altered mafic—ultramafic contact, 3. Pelite/ultramafic contact, 4. Granitic pod within dilational jog,

e.g. fold hinges at Transvaal e.g. Marvel Loch e.g. Yilgarn Star e.g. Edna May
MDO74 14.04.14

Figure 21. Examples of, and variations within, Model 1 style deposits illustrating the (1) Transvaal, (2) Marvel Loch, (3) Yilgarn
Star and (4) Edna May deposits

Gold mineralization in association with altered wallrocks
adjacent to auriferous veins

Quartz-biotite (—garnetL— sulfide schist after meta-
sedimentary rock; variable retrogression of biotite, garnet
to muscovite (synmetamorphic potassic alteration)
Plagioclase-biotite ‘—quartz)—suh‘ide rock after mafic rock
(synmetamorphic plagioclase alteration)

Calcite-forsterite (—magnetite;—sulfide rock (synmeta-
morphic carbonate alteration) or K—feldspar (—plagioclase,
dIOFSIde, amphibole)-sulfide rock (synmetamorphic
K—feldspar alteration)

Matted amphibole-rich rock (—biotite, sulfides) (synmeta-
morphic amphibole alteration)

Metamorphosed strata-bound alteration in mafic rock
(biotite—cordierite—plagioclase—anthophylite assemblage)
Gabbro and altered gabbro (plagioclase—amphibole—
biotite)

Tremolite—actinolite—biotite—sulphide rock and schist after
ultramafic rock (synmetamorphic potassic/calc-silicate
alteration)

Auriferous quartz veins: quartz—-biotite—sulfide in meta—
sedimentary rocks; quartz—diopside—sulfide in mafic rocks,
quartz—diopside—calcite—forsterite in ultramafic rock

Quartz—plagioclase—biotite—amphibole gneiss after tonalite
Psammitic metasedimentary rock

Pelitic metasedimentary rock

Amphibolite, mafic schist

Ultramafic schist and banded rock

Monzogranite, syenogranite
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Figure 23. Examples of, and variations within, Model 2 style deposits illustrating the (1) Cornishman, (2) Nevoria, (3) Golden

Pig and (4) Great Victoria deposits

Gold mineralization in association with auriferous quartz
veins and altered wallrocks
Fe—chlorite—amphibole—garnet, biotite, plagioclase,
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assemblage (synmetamorphic plagioclase alteration)
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plagioclase—anthophyllite assemblage*, except in model
variant 4 where it is amphibole—garnet-biotite, diopside,
kyanite, cordierite)
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‘ SHRIMP U-Pb on zircon; late kinematic dyke (GSWA sample 199043; Wingate et al., 2012)

0 SHRIMP U-Pb on zircon; undeformed granite (Qiu et al., 1999)

A TIMS U-Pb on allanite in almadine; ore-related ‘skarn’ (Mueller et al., 2004)

@ Pb-Pb errorchron; scheelite—allanite from ore related ‘skarn’ (Mueller et al. 2004)

@ Pb-Pb whole rock isochron; pegmatite synchronous with gold mineralization (Bloem et al., 1995)

0 SHRIMP U-Pb on zircon; metadolerite (Thébaud et al., in prep.)

‘ SHRIMP U-Pb on zircon; muscovite schist (Thébaud et al., in prep.)

Figure 24. Time-space chart of available geochronology relevant to the timing of gold
mineralization in the Southern Cross greenstone belt

The stratigraphy of the Forrestania greenstone belt
consists of two successions: a) a lower succession of
at least four sequences of predominantly tholeiitic and
komatiitic metavolcanic rocks intercalated with BIF,
sulfidic chert layers, and localized felsic metasedimentary
units; and b) an upper succession of fine-grained, clastic
metasedimentary rocks (pelitic to psammitic schists)
with minor BIF horizons, which is located in the centre
of the belt (Porter and McKay, 1981; Chin et al., 1984;
Frost, 2003). Enclosing the greenstone belt is a terrain
comprising deformed and recrystallized granitoids and
gneisses that have been intruded by younger, undeformed
plutons of granite and adamellite. A series of easterly
trending Proterozoic dykes of the Widgiemooltha dyke
swarm, intrude and crosscut all Archean successions
(Frost, 2003; Perring et al., 1995).

Six ultramafic belts recognized in the Forrestania area are
the Western, Mid-Western, Takashi, Central fold, Mid-
Eastern, and Eastern, with the Flying Fox deposit located
in the Western ultramafic belt (Perring et al., 1995, 1996).
The Eastern ultramafic belt is continuous over the entire
strike of the Forrestania greenstone belt, in contrast to
the other five belts, which have interpreted strike lengths
of between 10 and 40 km (Frost, 2003). Subeconomic
nickel concentrations are common in the southern half of
the Forrestania greenstone belt including at the Seagull,
Rat Bat, South Ironcap, Liquid Acrobat, and Beautiful
Sunday prospects. However, economic nickel sulfide
deposits are restricted to the Eastern and Western belts,
with only one occurrence in the Central belt (Antimony
Nickel NL — low-grade disseminated nickel sulfide).

22

To date, no economic nickel sulfides have been discovered
in the Mid-Western, Takashi, and Mid-Eastern ultramafic
belts (Frost, 2003).

Lithostratigraphy and regional
metamorphism

The stratigraphy at the Flying Fox deposit is interpreted
to represent an east-younging succession of four
distinct lithological packages that are interpreted to be
conformable (Figs 27 and 28): a) quartzofeldspathic
sedimentary rocks (footwall sedimentary rocks)
intercalated with minor basaltic rocks; b) a cumulate-
rich compound komatiite flow sequence (terminology of
Barnes, 2006) grading upwards from olivine—tremolite
rocks (ortho- and mesocumulates) to tremolite—chlorite
rocks (noncumulates) consistent with the A and B zones
definitions of Pyke at al. (1973). The cumulate komatiites
host an irregular halo of disseminated sulfides that directly
overlies the massive sulfides; ¢) a komatiite—basalt thin-
flow facies sequence, where noncumulate komatiites
and high-magnesium basalts (tremolite—actinolite rocks)
dominate; and d) biotite—garnet schist (hangingwall
sedimentary rocks) occupying the central portion of the
Forrestania greenstone belt (Collins et al., 2012a; Fig. 26).

The Forrestania greenstone belt has experienced upper
amphibolite facies metamorphism with peak metamorphic
conditions, interpreted by Porter and McKay (1981),
estimated at 655 + 30°C and 4.0 = 1.0 kbar. Regional
metamorphism resulted in widespread textural destruction;
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Figure 26. Simplified geological map of the Forrestania
greenstone belt (FGB) showing the distribution
of the ultramafic belts and locations of nickel
prospects and mines, including the Flying Fox
nickel deposit (modified after Perring et al., 1997)
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Figure 27. Geological plan map showing the distribution of rock types, nickel sulfide ore shoots, and major
structures at the Flying Fox deposit. Lithological contacts and structural elements are projected
from drillholes to c. 1350 mRL (120 m below surface), as granitic rocks dominate from 1350 mRL to
surface. Detailed geology is limited along the eastern margins as wedge drilling from parent holes
is concentrated at depth. The division of lithological packages (zones A-D) has been notated on the
plan view map which is correlative to the lithological packages in Figure 28 (modified after Perring

et al., 1997).

however, some diagnostic textures (e.g. olivine- and
pyroxene-spinifex textures in komatiites, olivine
adcumulates, sedimentary bands in BIF) and structures
(e.g. pillow rims in basalts) have been preserved in low-
strain domains (Perring et al., 1997).

Mining history and production

The Flying Fox deposit was discovered in 1977 at the
end of the late 1960s to early 1970s nickel boom, and
Outokumpu Mining Australia Pty Ltd subsequently mined
the deposit during 1994-97 producing about 240 kt @
3.2% Ni. Three exploration holes (about 700 m each in
length) were drilled in 1994-95 to test for a potential
fault-offset ore position (now identified as T1) located
about 300-350 m east of the ore shoot. One drillhole
intersected disseminated nickel sulfides, whereas the
other two drillholes intersected a barren contact. Although
strong geophysical anomalies were indicated, they were
not considered of sufficient interest to warrant follow-up
drill testing (Frost et al., 2006). In 2002 Western Areas NL
resurveyed and reinterpreted the stratigraphy and structural
overprint of the deposit, which led to a significant new
discovery, whereby the first concealed ore shoot T1 was
defined in 2004. Drilling has successfully delineated
a current mineral resource of 2 415 700 t of ore at an
average grade of 4.76% nickel.
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Deformation

Deformation at the Flying Fox deposit has been interpreted
from observations in diamond drill core that intersects the
ore zone, host rocks, and surrounding country rocks, and
from mapping of underground exposure of the TO and T1
ore shoots (Collins et al., 2012a; Fig. 29). A series of five
clearly defined deformation events have been interpreted
based on integrated observations of fabrics and block
movements from the thin section to mine scale. The D, to
D; structures in this deformation scheme are interpreted to
be the product of progressive deformation.

During D, to D,, ,, the coaxial and noncoaxial deformation
at the komatiite—sulfide and footwall sedimentary rock
contact has flattened and sheared the sulfides along and
off-contact. During the D; event, the main ore body
was faulted and offset up to a maximum of 350 m by
flat-lying thrusts, resulting in the current location of
the ore shoots (Fig. 28). The D, event is characterized
by the emplacement of the granitic magma postpeak
metamorphism during extension, which resulted in dilation
along the footwall sedimentary contact creating a brittle—
ductile fault and displacing the underlying stratigraphy.

The dilation of the granitic magma has created the TO
and T4 ore shoots, whereas the T5 pipe ore shoot resulted
from entrainment and relocation of a portion of the T5 ore
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Figure 28. Lithostratigraphic profile through the Flying Fox
depositbased on diamond drillhole interpretation.
The basal komatiites are interpreted to be a
differentiated channel flow, where A-and B-zones
areidentified (as defined by Pyke et al., 1973).The
differentiated channel flow is directly overlain by
aninterflow sedimentary unit separating this zone
from an overlying komatiite—basalt succession,
which is intercalated with interflow sedimentary
rocks and komatiitic basalts.The massive sulfides
are concentrated along the footwall sedimentary
and basal komatiite contact and are directly
overlain by discontinuous zones of disseminated
sulfides within the cumulate komatiitic rocks.The
granitic rocks comprise at least eight types and
crosscut the stratigraphy. All Archean rocks are
crosscut by the Proterozoic dolerite dyke.
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shoot by granitic magma about 20 m to the east along a
flat-lying thrust. The granitic rocks locally incorporated
the sulfide ore during this event, which has created the
atypical granite-hosted nickel sulfides (Fig. 28). Although
the sulfides were mobilized during deformation, the
massive ore is currently positioned at the base of the
high-Mg komatiites (differentiated komatiites, A and B
zone observed; Figs 28 and 30) and is directly overlain by
disseminated sulfides, which indicates that, in general, the
ore shoots have been mobilized locally off their primary
contact. Textures and mineralogy of alteration assemblages
identified by Collins et al. (2012a) indicate that fluid flow
was coeval with sulfide remobilization (Table 1).

Nickel sulfide mineralization

Nickel sulfide mineralization at the Flying Fox deposit,
described and interpreted in Collins et al. (2012b),
takes the form of a typical Type 1 sulfide-rich contact
mineralization associated with a number of Type V sulfide-
rich ore shoots that occur in faults and shear zones (Lesher
and Keays, 2002; Barnes, 2006). Mineralization is located
as thin, tabular high-grade ore shoots, which, for the most
part, directly underlie the lowermost komatiitic unit in
the stratigraphy (Figs 27 and 28). The ore is tectonically
dismembered into 11 discrete ore shoots that make up TO,
T1/T2, T4, TS5, T6/T7, and the original Flying Fox ore
shoot. The ore shoots are thin (generally 2-5 m wide) and
comprise varying proportions of massive, breccia, and
vein/stringer sulfides. The Flying Fox deposit as a whole
is a high-grade deposit with the majority of economic
resources accounted for by massive sulfides.

Layering of ore types typical of komatiite-hosted
deposits (Naldrett, 1973), comprising massive sulfides
overlain by matrix-textured and disseminated sulfides,
is not observed at the Flying Fox deposit. However, thin
discontinuous zones of disseminated sulfide, for example
the TS5 disseminated ores, often directly overly massive
sulfides. The matrix-textured ores — which are observed
at deposits including the Lunnon Shoot at Kambalda
(Ewers et al., 1972), Alexo (Naldrett, 1973), and Kattiniq
in the Raglan belt (Barnes et al., 1982; Lesher, 2007) —
are absent at Flying Fox, and commonly ore types occur
in isolation from each other and from the komatiite host
rock, especially in areas of extreme structural dislocation
(Collins et al., 2012a).

The TO, upper T1, T4, and upper T5 ore shoots are located
on the footwall sedimentary and granitic rock contact
that rolls from shallowly east dipping to a steeper 60° to
the east (Fig. 30). The lower portion of T1 and TS5, and
T2 ore shoots are located at the base of the komatiites
directly overlying the footwall sedimentary rocks and
dip between 70 and 90° to the east (Fig. 30). Some nickel
sulfide mineralization associated with T1/T2 and TS5 is
located off-contact in fault splays within the footwall
sedimentary rocks. The upper part of the T5 ore shoot has
a pipe-like geometry, and is almost entirely enveloped
by granite—pegmatite (Fig. 30). The T5 ore shoot is the
largest defined of the ore shoots discovered to date and is
still open at depth.
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Figure 29. Block models showing integrated history of the Flying Fox deposit, including volcanism, deformation, and

magmatism: a) Dy: primary volcanism producing nickel sulfide mineralization in an interpreted trough structure.
Basement contact is inferred, and all stratigraphy was essentially horizontal when extruded/deposited; b) D, ,.y:
east-west compression resulted in tilting of the stratigraphy (60° towards the east). Granitic dyke intrusions syn-
to post-D,,; ¢) D,,: continued east—west compression resulted in coaxial flattening along footwall sedimentary
rock — komatiite and hangingwall sedimentary rock — basalt contacts which resulted in the nickel sulfides being
squeezed off contact into the footwall sedimentary rocks; d) D,..: rotation in o1 (northwest—southeast) resulted
in the coaxial flattened zones becoming shear zones with a normal sense of movement; e) D,: rotation in o1
back to east-west shortening resulted in flat-lying shear zones, dipping 5-10° towards the southeast, that offset
the ore shoots and stratigraphy; f) D,: east-west compression ceased and extension commenced. Granitic
magma (no less than five pulses) intruded along and exploited the D; shear zones, dilating at triple points to
create the TO and T4 ore shoots. The TO ore shoot was dissected by granitic magma fingering through the ore,
resulting in slight rotation of the ore shoot and an apparent offset towards the west (i.e. in the direction of
granitic movement). A portion of the T5 ore shoot was ripped off and entrained in the granitic magma, forming
a pipe-like shoot offset up to tens of metres to the east.
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Figure 30. Simplified north-facing schematic cross-section
through the Flying Fox deposit illustrating the
location of the T0, T1, T2, T4, and T5 ore shoots
in relation to stratigraphy. Note that the massive
sulfide ore shoots are dominantly located between
the footwall sedimentary rock and komatiite, or
footwall sedimentary rock and granite contacts,and
that the stratigraphy is steeper at these contacts.
Theflat-lying faults show a dominantreverse motion
but revert to normal motion during later extension
when the granitic rocks intruded.

Locality 2: Spotted Quoll
nickel mine — Forrestania
greenstone belt

by Western Areas NL

The Spotted Quoll deposit is located about 6 km to the
south of the Flying Fox deposit in the Western ultramafic
belt of the Forrestania Nickel Project (Fig. 26).

The geological setting of the openpit Spotted Quoll
deposit is complex. Nickel mineralization is hosted
in a strongly mineralized shear zone hidden below a
granite dyke (Fig. 31). It is inferred that the sulfides have
been sheared and remobilized in their present location.
The local stratigraphy is heterogeneous, and includes
ultramafic rocks, basalts and various sediments, including
minor BIFs (Table 2). The stratigraphic age of the
sequence is not well known. However, metasedimentary
rocks from the lower part of the Spotted Quoll succession
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yield a maximum depositional age of 2832 + 13 Ma,
which indicates sedimentation younger than c. 2900 Ma
(Doublier et al., 2012).

The first ore from Stage 1 underground mining (Fig. 32)
was delivered in November 2011, and production of
10 000 tpa nickel during Stage 1 is expected. As of June
2012, the ore reserve estimate was 3.095 Mt @ 4.2% nickel
containing 131 360 t nickel, which remains open at depth.
This corresponds to a mine life of greater than 10 years.

Locality 3: synorogenic and
weathering-related BIF-hosted
high-grade iron ore in the Yilgarn
Craton: the Koolyanobbing K
and satellite deposits, Western
Australia

by T Angerer and SG Hagemann

Introduction

The structural control of high-grade iron ore (58-68 wt%
Fe) hosted in banded iron-formation (BIF) is considered
to be one of the most important factors that influence
the location and geometry of ore deposits (Dalstra
and Rosiere, 2008, and references therein). However,
the details of ore formation processes and the relative
timing of deformation and iron oxide enrichment is still
contentious for most known iron ore deposits globally,
mainly because of the lack of absolute geochronological
constraints. This has led to contrasting structural and
genetic models, which have been summarized recently
by Dalstra (2011). Syngenetic models propose that syn-
sedimentary or diagenetic structures, such as extensional
faults or boudinage (Findlay, 1994) led to lithofacies
variations or diagenetic modification of BIF and the
production of chert-free iron formation (e.g. Lascelles,
2007). In hypogene models, hydrothermal fluid flow
associated with deformation is interpreted to be important
for the localization of iron oxide mineralization in low
mean stress zones within and adjacent to structures (e.g.
Dalstra and Rosiere, 2008). Stress regimes in which iron
ore formed can be variable, in such as compressional
(Powell et al., 1999), extensional (Taylor et al., 1981),
and transpressional/tensional (Angerer and Hagemann,
2010) settings have been proposed for specific deposits.
Hypogene—supergene models are now proposed for
a multitude of iron ore deposits in various geological
settings to explain their multistage, structurally controlled
upgrading processes (e.g. Barley et al., 1999; Taylor et al.,
2001; Thorne et al., 2004). Ancient or recent supergene
goethite upgrade facilitates existing structures as high-
permeability zones for the movement of groundwater,
causing either leaching of gangue and redistribution of Fe
in the lateritic and saprolitic zone (Ramanaidou, 2009),
or pseudomorphic goethite replacement of gangue in
probably deeper zones of groundwater circulation (Morris
et al., 1980; Morris, 1985).
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Figure 31. Diagrammatic section through the Spotted Quoll deposit (Forrestania), illustrating distribution of the rock
types

Table 2. Local stratigraphy of the Spotted Quoll deposit

Geological unit Description Sub-units Approx. width (m)
Footwall sediments Quartz-sillimanite-mica +/- garnet Amphibolitic sediment, chert >500m
sediments
Spotted Quoll ore Pyrite-violarite (supergene), Massive, matrix, breccia, stringer and <15m, two ore horizons
zone(s) Pyrrhotite—pyrite—violarite— disseminated sulfide in enclosing in northern zone, one in
pentlandite (transition), Pyrrhotite— amphibolitic sediments and ultramafics southern zone

pentlandite—pyrite (primary).
Chalcopyrite- and arsenic-bearing
phases incl. niccolite, gersdorfite

Host sedimentary Mostly silicic sediments in footwall and  Amphibolitic sediment, BIF, felsic 20-30 m
sequence hangingwall of ore zone, with minor sediments. Debris flows and conglomerate

altered ultramafic. Strong banding and  located 10-15 m above ore zone

interlayering of sedimentary units

Hangingwall ultramafic Dominantly massive amphibole- Two main units of intercalated silicic 120-150 m
rich komatiite with porphyro-blastic sediments. Minor komatiitic basalt
metamorphic olivine. Minor olivine-rich
ultramafic
Basalt Actinolite-chlorite basalt 70-90 m
Graphitic, sulfidic Black to grey (graphitic) shale to Black shale, sulfidic shale, siltstone, 50-60 m
sediments siltstone with abundant iron sulfides +/- massive sulfide, massive carbonate
carbonate alteration
Eastern ultramafic Actinolite—chlorite komatiite with 60 m
metamorphic olivine
Eastern basalt Actinolite—chlorite basalt 60 m
Eastern sediments Quartz—mica sediments and schists >200 m
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Figure 32. 3D model of the Spotted Quoll mine site showing
the open pit, and underground stages 1 and 2

Many Archean greenstone belts in the Youanmi and
Murchison Terranes, Yilgarn Craton, host BIF (~30%
Fe), some of which contain high-grade magnetite-,
hematite- or goethite-rich ore deposits (58—-68% Fe)
of about 10 Mt to more than 200 Mt in size. In recent
years, numerous small- to medium-sized exploration and
mining companies are focusing on understanding controls
on greenstone belt-hosted iron ore and exploiting the
increasing number of delineated resources (Greentree and
Lord, 2007; Cooper and Flint, 2009). As a result, several
industry-sponsored studies of greenstone belt-hosted iron
deposits in the Yilgarn Craton have been, or are currently
being, undertaken by the Centre for Exploration Targeting
in order to understand ‘iron upgrade’ processes, timing
of mineralization with respect to the terrain history,
structural control, and fluid sources, as well as generating
new targets (a brief and meanwhile slightly outdated
summary given by Angerer et al., 2010). BIF-related
high-grade magnetite-, hematite-, and goethite-rich ore
deposits Archean granite—greenstone belts of the Yilgarn
Craton are described for the Weld Range (Duuring and
Hagemann, 2012b, a), Jack Hills Matthew Ridge (Maskell
et al., in press), and Windarling (Angerer et al., 2013). The
present article summarizes the results of a study on the
structural controls and mechanisms of ore formation in the
Koolyanobbing iron ore deposits (Angerer and Hagemann,
2010; Angerer et al., 2012).
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Geological setting of the Koolyanobbing
deposits

The Koolyanobbing greenstone belt (KGB) in the
Southern Cross Domain, 350 km east of Perth, contains
seven known deposits with a total pre-mining iron ore
reserve of about 200 Mt (Portman, 2008). The main
deposit, K pit, with a pre-mining resource of more than
100 Mt of high-grade iron ore is assumed to be the
largest known single deposit in the Yilgarn (Fig. 33). The
KGB is composed of the about 3.0 Ga lower greenstone
succession, which mainly consists of tholeiitic basalt flows
and pillows and minor basic tuffs, komatiites, and several
BIF units. A subdivision of mafic volcanic events in the
KGB into four distinct lithostratigraphic subsequences
(Fig. 34) has been proposed by Angerer et al. (2012). This
division into subsequences 1 to 4 (S1 to S4) is based on
the occurrence of four major mafic volcanic sequences
divided by three inter/postvolcanic periods, recorded
as greenstone belt-wide BIF sedimentation, which
therefore mark the top of each sequence. The ultramafic
rocks in the sequences, based on whole-rock high field
strength elements, preserve both aluminium-depleted and
-undepleted komatiites and continental lithospheric mantle
contaminated boninites. Such a co-magmatism of both
lava types can be interpreted as the result of the interaction
of a mantle plume (source of komatiite) in a geodynamic
subduction zone (source of boninite) setting (Angerer et
al., in 2012).

The following deformation sequence in the KGB has
been established by Angerer and Hagemann (2010)
and is also summarized in Fig. 35: a) a D, produced
mostly horizontal westerly to southwesterly trending
small-scale folds in the BIF units. The D,, (recumbent
isoclinal) and D,, (open to tight, upright to vergent)
have been produced probably within one progressive
deformation event that also produced minor D,, thrusts;
b) the D,, probably related to the emplacement of the
surrounding granitoid domes, such as the Ghooli dome,
tilted the lower succession and D, folds from a roughly
horizontal position into the steep east-northeasterly
dipping or plunging position. The KGB represents one
single fold limb showing locally internal parasitic D,,
folds with varied fold hinge orientation. The D,, is a
progressive deformation subsequent to D,,, mainly
involving reverse shearing and folding of chlorite schists
and talc-altered BIF, and predominantly reverse faulting
of lithological boundaries; c¢) ductile strike-slip movement
took place during D5 along the boundary to granitoids/
gneisses that formed the Koolyanobbing Shear Zone;
d) brittle strike-slip movement during D, led to tectonic
duplication accommodated by horizontal duplexes and
reverse faults; e) a late-stage brittle segmentation and
reactivation of existing faults is attributed to Ds.

The D, structures formed in a north—south to northwest—
southeast compressional regime, whereas all D, to D,
deformation events were generated during an east—west
compression and were expressions of the main orogenic
event in the central Yilgarn Craton. The deformation
sequence in the KGB is in accordance to the proposed
evolution in the Southern Cross Domain (Dalstra, 1995;
Chen et al., 2001; Chen et al., 2004).
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Figure 33. Overview maps: simplified geological map of the Koolyanobbing greenstone belt (KGB); insets: Yilgarn Craton with
its location in Australia (modified after Angerer and Hagemann, 2010)

The K deposit

The K deposit is located in the central part of the KGB,
about 1.5 km north of the town of Koolyanobbing
(Fig. 33). The host rock of the K deposit is a quartz—
magnetite—martite BIF unit. The footwall and the
hangingwall of the BIF sequence consist of chlorite
schists with internal decametre-wide lenses of massive
metabasalts and ?metatuffites. A 50-70 m thick lens
of stratigraphic massive pyrite is located between the
footwall mafic rocks and the BIF (Figs 36 and 37). The
quartz—magnetite BIF displays considerable compositional
variation in the south and southeastern pit walls, from
carbonate—magnetite to talc-magnetite BIF. The BIF in
the K deposit is structurally thickened to about 230 m due
to: a) east- to southeast-plunging metre- to decametre F,, -
folds, the latter displaying S-, Z-, and M-shapes and fold
axial planes that dip steeply towards the north-northeast to
northeast; b) a large-scale sinistral duplex and imbricate
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fan system (with a western and eastern lithon), which is
indicated by en echelon, steeply north-northeasterly to
east-northeasterly dipping D,-faults that are parallel to,
and crosscutting, the BIF unit at a low angle. Ds-faults
crosscut the D,-duplex and -imbricate fan structures, or
reactivate older faults.

The iron ore in the K deposit ore body can be subdivided
into four distinct zones: a) a goethite—martite—specularite
zone represents the main ore body and extends from the
original surface to about 70 m below the current surface;
b) a martite—specularite—goethite zone is situated generally
below the first zone and includes the western and eastern
lithons; c) thin pure specularite or quartz—specularite
breccia zones are D,-duplex and -imbricate fan hosted;
d) a magnetite zone (Guarin Jr et al., 2009) in the south
wall and in the central part of the openpit characterized by
medium-grade quartz—, talc—, and carbonate—magnetite
BIF enveloping magnetite ore bodies. The main magnetite
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Figure 37. Cross-section of the K deposit. Location is shown by the red line in Figure 36 (modified after Angerer and Hagemann,

2010)

ore zone is located either underneath the martite ore body,
or is juxtaposed against it by steeply dipping D,/D; faults.

Goethite—martite—specularite ore is laminated (partly
vuggy) or massive. With a higher content of (typically
coarse crystalline) specularite in the ore, the laminated
texture tends to be obliterated. Magnetite ore is texturally
similar, and appears to be the unweathered precursor of
martite ore.

Ore-forming stages

In the K deposit, four hypogene ore formation stages
have been identified and related to specific Archean
deformation events. A fifth stage is the recent supergene,
that is, weathering-related, modification of pre-existing
hypogene ore.

Ore stage 1: siderite and Fe-magnesite
replacement alteration

Iron ore stage 1 is an early Fe-Mg(+Ca?) metasomatism
that caused local alteration of quartz—magnetite BIF to
Fe-rich carbonate-magnetite BIF, replacing silica layers
(Fig. 38a). Carbonates are mostly siderite and Fe—
magnesite. Iron is added to the BIF host rock; hence,
carbonate alteration is an important ore-forming stage.
Because carbonates are structurally weaker and easier to
dissolve than quartz at very low temperature, ore stage 1
‘prepared’ BIF for subsequent strain localization and
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coupled dissolution of carbonate gangue during ore stage 2.

The structural control of this carbonate—talc alteration is
impossible to reconstruct because subsequent deformation
(D,-D,) and alteration were so intense in the deposit that
the geometry of the alteration zone has been obliterated.
The relative timing of ore stage 1 may be as early as
diagenetic; however, quartz in zones of incomplete
replacement shows recrystallized textures and this suggests
that replacement postdated early metamorphic D;.

Ore stage 2: residual magnetite enrichment
during D,-D,

Iron ore stage 2 includes the formation of laminated
magnetite ore and magnetite ore breccia. Magnetite
ore bodies are located predominantly in tight D,/D,-
folded zones, which strike subparallel to the BIF unit,
that is, north-northwesterly to west-northwesterly and
plunge is moderately steep. Considering the thinned
limbs consisting of residual magnetite layers (Fig. 38b),
dissolution of carbonate during tight folding is likely to
be the mechanism of ore formation. As a consequence of
gangue dissolution, microporosity increased and caused
magnetite microlayers to disintegrate forming fine-grained
cataclasis zones intercalated with the mechanically more
stable magnetite mesolayers in laminated and breccia ore.
By overprinting relationships, the minimum age for the
magnetite ore formation in the K deposit is constrained
by the onset of D,.
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The proximal talc—carbonate and intermediate carbonate
zones surrounding magnetite ore indicate their close genetic
relationship to ore. The close spatial relation between
talc and magnetite ore may be explained by two, not
necessarily excluding, processes: a) selective mobilization
of pre-existing talc by mechanical or by solution transfer,
occurring in high mean stress zones such as tight fold limbs;
or b) reaction of dissolved Mg from selectively mobilized
magnesite in areas of residual quartz-rich magnetite BIF
under low-grade conditions; or both.

Ore stage 3: hydrothermal/contact metamorphic
magnetite in D,,—D, structures

Iron ore stage 3 includes the mineralization of magnetite
in brittle and brittle—ductile structures, such as D,,-faults,
-fractures, and -breccias; in reactivated D,,-fold cores,
and locally in wall rock and quartz veins adjacent to
mineralized brittle structures. Main structures that control
the ore stage 3 mineralization in the K deposit are the
boundary fault between massive sulfide and quartz-, and
carbonate—magnetite BIF (Fig. 38c). The main process
of magnetite formation during ore stage 3 involved
replacement of quartz and localized carbonate.

The granular magnetite ore in the K deposit was modified
by pressure-solution deformation and mineral growth
during ore stage 3. In magnetite BIF, only minor and
centimetre- to decimetre-scale brittle—ductile shear zones
or mineralized fold cores contain stage 3 magnetite
mineralization. The stage of specularite replacement (ore
stage 4), associated with D, faults, represents the likely
minimum age for ore stage 3.

Ore stage 4: specularite mineralization and first
martitization (syn-D,)

Specularite mineralization controlled by steep D, faults
is defined as ore stage 4 (Fig. 38d). Major controlling
structures are large strike-slip faults with a north-
northwesterly to west-northwesterly trend (Fig. 33).
Mineralized faults at the deposit-scale include second-
order strike-slip faults, such as the footwall and horse
faults of the duplex system, and strike-slip and reverse
shear zones in the eastern lithon (Fig. 36).

Specularite formation is characterized by the replacement
of gangue in laminated micro-specularite—martite ore and
medium-grade BIF, and by coarse-crystalline massive and
disseminated specularite in brittle faults, breccias, and
voids. Specularite formation is also locally associated with
hydrothermal quartz—Fe-dolomite—talc—chlorite—pyrite—
magnetite alteration associated with breccia pods, brittle
faults, and tension gashes, which all crosscut magnetite
ore. This carbonate-rich alteration may be associated
to a second metasomatic event, but to some extent
remobilization of early carbonate (stage 1) may have
also taken place. The precipitation of this hydrothermal
assemblage in BIF was not an effective ore upgrading
process; in fact, it caused downgrading of magnetite ore.
However, any carbonate replacement of quartz in siliceous
BIF was important ground preparation for weathering-
related leaching during ore stage 5 (see below).

Geological setting of mineral deposits in the Southern Cross district
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Hydrothermal martitization related to specularite overprint
has been observed in some magnetite ore (cf. Lobato et
al., 2008). In the weathering zone, it is not distinguishable
from the ubiquitous martitization related to weathering (cf.
Morris, 1980; Morris, 1985).

Ore stage 5: recent supergene ore stage

Supergene ore stage 5 produced two generalized
weathering profiles, which: a) overprinted preferably
altered BIF; and b) much more importantly, overprinted
hypogene ore (Fig. 38¢). Whereas weathering in quartz—
magnetite BIF does not show significant ore formation,
unless it was strongly carbonate altered, weathering of
hypogene ore exhibit the following main zones, from
the base to the top: a) a magnetite ore showing no
weathering; b) a martite zone, which indicates partial
to complete gangue leaching; c¢) a goethite-rich martite
zone, which shows partial to complete pseudomorphic
gangue replacement from carbonate(—siliceous) BIF and
breccias, and goethite replacement of martite forming
goethite—martite ore; d) a massive to vuggy, clay- and
secondary silica-rich goethite zone, which represents a
hard cap. In these zones, which are similar to vertical
depth profiles of supergene modifications in iron ore
deposits in the Hamersley Basin, relative and absolute
thicknesses strongly depend on the extent of vadose and
phreatic zones (Clout, 2003). The maximum age of this
weathering-related overprint in the KGB may be as old
as Permian, corresponding to regolith ages throughout the
Yilgarn (Anand and Paine, 2002).

Summary and exploration significance

Hydrothermal BIF alteration in the K deposit and iron
ore formation took place in several stages, commencing
with an early Fe-Mg(+Ca?) metasomatism, which
caused localized alteration of quartz—magnetite BIF to
Fe-rich carbonate—magnetite BIF. This was followed by a
synorogenic mobilization of gangue minerals producing
residual enrichment of mostly magnetite protore (i.e. a
partially mineralized or carbonate-altered rock, which
was subject to further alteration) and talc alteration
surrounding the protore. Localized hydrothermal quartz—
magnetite mineralization in reverse fault breccias and
fractures occurred afterwards and was followed by
strike-slip fault-controlled late hydrothermal alteration
that involved the formation of specular hematite and
martitization. The P-T—X characteristics, fluid sources and
timing and evolution of the hydrothermal (mineralizing)
fluids and associated hydrothermal alteration, is the
subject of current investigations.

The results of this study may influence exploration for
iron ore in Archean BIF because the strong structural
control of iron ore that has been described for the KGB
implies the general necessity of evaluating the structural
features and evolution of an exploration district to fully
understand its prospectivity. The close spatial relationship
of the surface-related upgrade by goethite precipitation
and gangue leaching to existing medium- to high-grade
magnetite—martite—specularite ore, clearly indicates the
possibility of existing blind magnetite or specularite-rich
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Figure 38. Summary of ore-forming stages at Koolyanobbing (modified after Angerer and Hagemann, 2010)
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ore bodies within the BIF units. The martitization during
specularite stage may also have produced localized
high-grade specularite—martite ore. The occurrence of
talc and carbonate proximal to high-grade ore may be
used as footprint indicators for high-grade magnetite-,
martite-, and specularite-rich ore types. In order to
delineate concealed ore bodies and alteration footprints,
an evaluation of the prospectivity of structures in the BIF
unit, combined with the application of geophysical — that
is, gravity, magnetic, and reflectance spectral surveys —
are essential.

Koolyanobbing excursion stops

Locality 3a: K deposit

Two Lookout provides an excellent overview of the entire
pit. Afterwards, we enter the pit and stop at two localities.

The first stop is within the ‘K deeps’ zone, the carbonate(—
talc)-rich magnetite ore zone. Here, the intense, isoclinal,
folding and shearing in BIF is observable, as well as
syndeformational upgrade textures (thinned BIF oxide
layers in fold limbs and mineralized breccias) with talc-
altered BIF haloes. Shear zone hosted talc—magnetite
schists and hematite veins and breccias are mostly related
to subsequent D,-reactivation.

The second stop in the pit is farther up, in the oxidized
martite ore zone. Here we walk along the footwall mafic
rocks, intensely sheared chlorite schists (weakly Fe-
enriched), into BIF, crossing the high-grade hematite
(specularite) mineralized footwall D,-shear zone. Martite—
specularite ore in BIF is only patchily distributed, as here
we are at the edge of the deposit.

Locality 3b: supergene zone in A deposit

Supergene-altered quartz—martite BIF with martite—goethite
ore, lies within the weathering zone of A deposit. BIF does
not show any carbonate here but deeper in the deposit
Mg-siderite is the dominating gangue mineral. Quartz and
siderite have been replaced by goethite in the ore.

Locality 3c: core farm with KPDDO017 core

Rock textures of — and transitions between — variably
altered BIF and ore types (goethite—martite—specularite
and magnetite—carbonate—talc), as well as the footwall
massive pyrite zone and chlorite schists below BIF, can
be observed in the very informative drillcore KPDDO17.

Additional locality (not visited): D deposit

The abandoned D deposit is a smaller and relatively
shallow ‘satellite’ deposit, a few kilometres south of K
deposit. Here, we study the goethite-richer supergene
zones. Walking down the ramp to the bottom of the pit,
we observe the transition from: a) supergene detrital to;
b) in-situ, remobilized, vitreous goethite ore to; ¢) footwall
mafic rocks to; d) fracture controlled patchy saprolitic
martite—goethite ore in BIF to; e) fault-related hypogene
specularite-rich martite ore.

Geological setting of mineral deposits in the Southern Cross district
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Locality 4: the geological setting
of the Marvel Loch gold mine

by S Shenton, St Barbara Limited

Introduction

Marvel Loch is the largest of the many shear-hosted gold
deposits found within the Southern Cross greenstone
belt. The Marvel Loch gold mine is located 600 m east of
the Marvel Loch township and 35 km south of Southern
Cross. Prospectors Lenneburg, Williamson and Marksman
first discovered gold there in 1905.

St Barbara Ltd purchased the Yilgarn operations from Sons
of Gwalia in August 2004. Marvel Loch has produced in
excess of 2.5 Moz Au.

Geological setting

The Southern Cross Province comprises several
greenstone belts with one of the larger ones being the
Southern Cross — Forrestania greenstone belt, running
from north of Bullfinch, through Southern Cross town,
Marvel Loch, Nevoria, Forrestania, and southeast of
Hyden (Fig. 39a). Like many of the other greenstone
belts, this is strongly attenuated in the north-northwesterly
direction. Rock units near Marvel Loch trend north-
northwesterly parallel to the greenstone belt margins, and
are inferred to young away from the Ghooli granite dome.
Multiple periods of folding have shortened the greenstone
belt, generated district-scale folds, and accompanied
faulting that has juxtaposed rock units at slightly oblique
angles across the fault zones.

Marvel Loch geology

The Marvel Loch gold deposit is hosted by a steep
westerly dipping package of ultramafic, mafic, and
sedimentary rocks to the west, with gabbro, dolerite, and
sedimentary rocks to the east (Fig. 39b). In places, units
are overturned and may dip steeply to the east. Rock type
identification is based on textures, mineralogy, and whole
rock geochemistry. In many greenstone belts, all three are
well preserved and useful. However, around Marvel Loch
high strain has overprinted some early textures, high-grade
metamorphism has developed new minerals, and alteration
has modified rock chemistry. All of the stratigraphy has
been overprinted by amphibolite facies metamorphism
and deformed by a major shear zone (the Marvel Loch
Shear Zone).

Gold mining is focused in 10 steeply plunging ore
pipes: four in the north, and three each in the central and
southern areas (Figs 40 and 41). These pipes generally
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Figure 39. a) Simplified geology of the Southern Cross greenstone belt showing the distribution of gold deposits;

b) detailed geology of the Marvel Loch mine area

plunge 60-80° south, have dimensions of tens of metres
on a horizontal mine level and are continuous down plunge
for more than 500 m. Gold occurs in quartz veins and in
altered wallrocks with sulfide minerals. The dominant
sulfides are pyrrhotite, arsenopyrite, and pyrite.

The greatest challenge facing the Marvel Loch geology
team today is the presence of large granitoid sills that
crosscut mineralization in all areas of the mine (Fig. 42).
Their intrusion was guided by pre-existing faults, and they
are themselves faulted along chlorite-bearing surfaces. At
the current mining level in the south (650 m below the
pit surface), a large pegmatite approximately 80-100 m
thick has displaced mineralization. This pegmatite layer
has been interpreted to affect the centre and south lodes
below 200 mRL and, therefore, drilling has commenced
to determine the geological setting below this pegmatite.

Locality 5: Nevoria gold deposit

by MP Doublier

Introduction

The Nevoria group of deposits is located at the southern
closure of the Ghooli dome, about 40 km south-southeast
of Southern Cross, and about 10 km southeast of Marvel

Loch. The deposit was first mined in the 1930s by Nevoria
Gold Mining Co, and by Great Western Consolidated NL
in the 1950s (Cullen et al., 1990).

Geology

The Nevoria deposits belong to the BIF-hosted Model
2 deposits, where the rheological contrast between the
competent BIF and the surrounding mafic and ultramafic
rocks is essential for deposit formation (see ‘Styles of gold
mineralization’; Figs 22 and 23). The deposits are at the
moderately dipping southern limb of the regional ‘Nevoria
Anticline’ (Fig. 43). This doubly plunging anticline is
refolded around the southern closure of the Ghooli dome,
and delineated by two to three beds of grunerite—quartz
BIFs, which are traditionally termed ‘BIF-1" to ‘BIF-3’.
They vary in thickness between 0.2 and 20 m (Cullen et
al., 1990; Mueller et al., 2004), and show a sinistral offset
along brittle northeast-trending faults (Fig. 44). The major
rock types within the deposit are tholeiitic amphibolites
in the footwall and a mixed volcanic sequence dominated
by metakomatiites in the hangingwall of the BIF horizon
(Mueller et al., 2004). The Nevoria geology is intruded
by a granite—pegmatite complex, whose main body is
exposed to the north of the mines, and has a U-Pb age of
2634 + 4 Ma (Qiu et al., 1999). Related pegmatitic dykes
cut and postdate the Nevoria ore bodies (see cross-section
in Fig. 44).
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the pit contours shown for reference

Geological setting of mineral deposits in the Southern Cross district

39

Mineralization

The Nevoria deposit has been studied in detail by Mueller
(1997) and Mueller et al. (2004), who characterized the
gangue as calcic and highly reduced, and distinguished a
hedenbergite—actinolite and almandine—hornblende type
in the iron formation (so-called ‘skarns’; e.g. Mueller
1997). The amphibolites and komatiites adjacent to the
BIFs typically show wide zones of biotite alteration.
According to Mueller (1997), ‘the calc silicates are
intergrown with abundant pyrrhotite (10 vol. %) and with
accessory (£0.5%) pyrite, arsenopyrite—loellingite, and
chalcopyrite. Native gold is enclosed in hedenbergite,
actinolite, almandine, and quartz, and occurs together
with the alloy maldonite (Au,Bi) and a suite of bismuth
tellurides’. Mueller et al. (2004) estimated the peak fluid
temperature at 550-600°C, and corresponding pressures
at 300400 MPa.

Locality 6: granite—greenstone
contact south of Southern Cross

by MP Doublier and N Thébaud

From the town centre of Southern Cross, turn south at the
Palace Hotel onto the road to Marvel Loch. Follow the
road for about 300 m, and park on the right-hand side of
the road in front of the water pipeline.

This locality provides a cross-section through the granite—
greenstone contact between the Ghooli dome to the east
and the easternmost part of the Southern Cross greenstone
belt to the west (Fig. 25).

Locality 6.1: medium- to coarse-grained
gneiss within Ghooli dome

Outcrop about 10 m north of the road (MGA 722217E
6542126N).

The locality is a shallow pavement outcrop of medium- to
coarse-grained gneiss (Fig. 45a). This rock type forms
wide parts of the northern, western and southern Ghooli
dome. There is no age from this particular outcrop, but
within the Ghooli dome this rock type yields magmatic
ages between c. 2775 and 2720 Ma. In the outcrop,
the rocks have a foliation that dips steeply towards the
southwest. Microstructures indicate that the deformation
occurred under mid- to high-amphibolite facies conditions
with no retrograde overprint. The rocks show a mineral
assemblage of quartz, feldspar, muscovite and biotite
(Fig. 45b).
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Figure 43. Bedrock geological map from southern closure of the Ghooli dome and adjacent greenstones, showing the regional
context of the Nevoria group of deposits (after Mueller et al., 2004)

Locality 6.2: traverse through the (Fig. 46d). The latter unit is about 10 m wide and marks
T the boundary of the greenstone succession that crops out

granite-greenstone contact on the southwestern side of the ridge.

The following traverse through the granite—greenstone . . .

contact starts about 50 m further towards Marvel Loch, The greenstone sequence begins with a well-foliated,

on a little ridge on the southern side of the road (MGA fine-grained amphibolite, which becomes locally variolitic
722271E 6542041N). farther away from the contact. (Fig. 46e: varioles show

stretching lineation plunging shallowly towards the south-
In the little gully on the northeastern side of the ridge are ~ southeast). The amphibolites are followed by komatiitic
small outcrops of the coarse-grained gneiss from Locality ~ metabasalts with well-preserved pyroxene-spinifex texture
7.1, in contact with fine-grained felsic gneiss (Fig. 46a).  (Fig. 46f). The traverse ends with ultramafic schists, which
The latter shows an intense foliation dipping moderately ~ are exposed in a costean. The greenstone succession has
towards the southwest. Microstructures indicate ductile  been affected by folding and faulting. There is at least one
deformation of feldspar and a chessboard pattern in  generation of folds that refolds the penetrative foliation,
quartz, corresponding to temperatures of about 650°C  ranging from centimetre to metre scale. The folds are
(Stipp et al., 2002). The mineral content is quartz, feldspar, ~ characterized by moderately south-plunging fold axes,
muscovite and garnet (Fig. 46b). The contact relationship ~ steep east-west-trending axial planes, and some S-type
between the gneisses and the finer grained material isnot ~ asymmetry. In parts of the outcrop, these folds are
always easy to characterize but is at least partly tectonic ~ mirrored by a macrocrenulation (mm up to cm scale; Fig.
(Fig. 46¢). However, outcrops in a similar structural 46g). However, small-scale S-folds with steep fold axes
position further north show that the gneisses are intruded ~ have also been observed (Fig. 46h). It is not clear whether
by fine-grained granite, which is possibly the protolith of ~ they reflect a separate deformation event.
the intensely foliated, fine-grained gneiss in this outcrop
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Figure 44. Geological map and long section from the Nevoria mine area, illustrating the
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Locality 7: greenstone rafts and
komatiites east of Southern Cross

by MP Doublier and N Thébaud

From the Great Eastern Highway in the town centre of
Southern Cross, turn north onto Antares Street towards
Bullfinch. Follow the road for about 800 m until the turn-
off to Koolyanobbing. Follow the road to Koolyanobbing
for about 550 m until the beginning of a track to the
northeast in the salt lake (MGA 721833E 6543205N).
Follow the track for 400 m, and park off the road on the
little ridge (MGA 721850E 6543620N). The outcrops
are east and west of the car park on the northern and
northwestern edge of the salt lake.

This lake section traverses from west to east across two
greenstone remnants east of the main greenstone belt
(Figs 25 and 47). They are separated from the latter and
from each other by gneisses and granites, and presumably
represent rafts.
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Locality 7.1: fine-grained granite close to
the granite—greenstone contact

From the car park, go 200 m to the west-southwest to the
edge of the salt lake (MGA 721626E 6543508N).

This boulder-like outcrop on the edge of the salt lake
(Fig. 48a) exposes fine- to medium-grained granite
(quartz, feldspar, biotite, muscovite, iron oxide). The
deformation is partitioned, which results in both largely
undeformed zones and zones with a solid state fabric that
dip steeply to the southwest (Fig. 48b). These granites
occupy a similar structural position to the fine-grained
gneisses exposed at locality 6.2, but have a different
mineralogy.

Locality 7.2: Komatiite flows
(MGA 721695E 6543530N)

The area between locality 7.1 and the car park is
dominated by thin komatiite flows, with a few outcrops of
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Figure 45. Locality 6.1: a) outcrop of gneisses on the edge of
the salt lake; b) mineral assemblage in the gneiss
(x2.5 cpl)

foliated granite and tremolitic schist. Thin komatiite flows
are exposed on the sides of the small ridge (Fig. 49a).
The flows are typically thinner than 50 cm. This type
of komatiite allows the determination of stratigraphic
younging, because the flows typically consist of an upper
zone characterized by olivine—spinifex texture and a
lower cumulate-rich zone (Fig. 50). In the upper part
of the spinifex zone, the orientation of the plates is
typically random, and becomes more organized towards
the bottom (Fig. 49b; pen points in younging direction).
Stratigraphic younging of the succession — as indicated
by the komatiites — is towards the southwest, that is,
towards the greenstone belt. The komatiites locally contain
a patchy texture in the cumulate zone that is reminiscent
of porphyroblasts (Fig. 49¢). This texture is caused by
widespread chlorite replacement of olivine, which appears
to delineate an early fracture pattern in the lower part of
the flow.

There are several small komatiite outcrops on the northern
edge of the lake.

Geological setting of mineral deposits in the Southern Cross district
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Locality 7.3: granite, gneiss, and
amphibolite separating the two

greenstone rafts (MGA 721819E

6543625N)

Fine- to medium-grained granites and coarse-grained
gneisses are exposed on and adjacent to the track. They
mark the end of the western greenstone raft. The foliation
in the gneisses and a small sliver of mafic amphibolite dips
steeply towards the south-southwest.

The traverse continues to the southeast of the track, along
the edge of the salt lake.

Locality 7.4: fine-grained granite

From the last outcrop, go about 150 m to the southeast
(MGA 721931E 6543513N).

This outcrop consists of fine- to medium-grained granite,
which forms boulders on the edge of the salt lake
(Fig. 51a). The rocks have a moderately west-dipping
foliation, which varies in intensity. In thin section, the
foliation is delineated by biotite, and is possibly magmatic.
Other minerals present are plagioclase, K-feldspar, quartz,
muscovite after K-feldspar, chlorite after biotite, and iron
oxides (Fig. 51b).

Locality 7.5: coarse-grained gneisses
and komatiite

Go 40 m to the east from locality 7.4 (MGA 721980E
6543521N).

The gneisses are cut by quartz veins, and exhibit a
steeply southwesterly dipping foliation. Aligned quartz
aggregates define a shallow stretching lineation, which
plunges towards the south-southeast. The shear sense is
ambiguous. Asymmetric clasts are dominantly sinistral and
there are also sinistral shear bands. However, there are also
clasts that show a dextral shear sense.

A 5 m wide komatiite unit with well-preserved olivine—
spinifex texture lies 10 m east of the gneisses (MGA
721985E 6543529N). The stratigraphic younging appears
to be towards the southwest (Fig. 52).

Locality 7.6: laminated BIF

From the last outcrop, go about 160 m to the east along
the edge of the salt lake (MGA 722130E 6543496N).

The last stop on the traverse is a laminated BIF. The
rocks show local very fine banding at mm to 0.5 cm scale
(Fig. 53a), but layers can also reach a thickness up to 2 cm
(Fig. 53b). The structural inventory is not very complex.
The bedding typically dips steeply towards the southwest,
and folds are only locally developed (Fig. 53c; fold axes
plunge 305/30°). However, felsic intrusions appear to
splay and fold the bedding (Fig. 53d).
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MDO93 04.09.12

Figure 46. Locality 6.2: a) outcrop of the contact between coarse- and fine-grained felsic gneisses (hammer as scale);
b) mineral assemblage in the fine-grained gneiss (x2.5 ppl); the foliation is delineated by the aligned
muscovite; c) detail of tectonic contact between coarse- and fine-grained felsic gneisses (pen as scale);
d) outcrop of the well-foliated, fine-grained gneisses, which mark the boundary between Ghooli dome
and greenstones (pen as scale); e) vesicular metabasalt; stretched vesicles plunge south-southeast (pen
as scale); f) pyroxene-spinifex texture in komatiitic metabasalt (pen as scale); g) small-scale folds with
moderately south-plunging fold axes (pen as scale); h) S-type folds with steep fold axes (pen as scale)
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Locality 8: lake traverse through
central part of the greenstone belt
north of Southern Cross

by MP Doublier and N Thébaud

From the Great Eastern Highway at Southern Cross, turn
north onto Antares Street towards Bullfinch. Follow the
road for about 1.9 km and then turn left on a bitumen road
following the signage for the cemetery. Go straight ahead
at the next intersection (after about 700 m) and cross the
railway line. Stay on the road, which becomes a gravel
road north of the railway line, for 1.3 km, until the road
bends towards the west. Here, turn off to the right, and
follow a gravel road that runs along the eastern side of the
pipeline. Stay on this road for 1.4 km and then park next to
the track (MGA 718263E 6546220N).

The traverse runs along the northern edge of the salt lake
west of the water pipeline to Bullfinch and goes right
through the middle of the Southern Cross greenstone belt
(Figs 25 and 54). It crosses the zone where the eastern and
western branches of the belt converge, in the ‘bottleneck’
of the belt where it is very narrow. Hence, the geology is
characterized by intense deformation and high tectonic
strain.

Locality 8.1: foliated amphibolite

From the car park, cross the water pipeline and go about
60 m to the west-southwest to the outcrop at the edge of
the lake (MGA 718229E 6546179N).

The outcrop is dominated by grey to black, fine- to
medium-grained amphibolites that have an intense, steeply
southwesterly dipping foliation (Fig. 55a). The structural
inventory of the outcrop includes folds, boudinage of
quartz veins and amphibolite, and tension gashes. Both
boudins and tension gashes are commonly symmetric
and indicate an amount of coaxial deformation (Fig. 55b;
note that the tension gashes crosscut the sheared and
boudinaged quartz veins, indicating their formation during
a later increment of the deformation).

)

04.09.12

Figure 48. Locality 7.1: a) granite outcrop east of Southern Cross; b) in places, the granites show a steep southwest-dipping

solid state fabric (hammer as scale)
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Figure 50. Diagrammatic section and
geochemical trends through a thin
komatiite unit (after Mason, 1984)
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Figure 49. Locality 7.2: a) rubbly outcrop of komatiite flows
(pen as scale); b) upper part of a komatiite flow
with olivine—spinifex texture becoming less regular
towards the top of the flow (pen points up section);
c) chlorite porphyroblasts in the basal cumulate
part of a komatiite flow (pen as scale)

1 mm ’
MDO96 04.09.12

Figure 51. Locality 7.4: a) outcrop of fine-grained granite at
the edge of the salt lake; b) mineral assemblage
of fine-grained granite (x2.5 ppl)
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MDO97 04.09.12

Figure 52. Locality 7.5: olivine-spinifex texture within a komatiite flow
indicates younging towards the southwest (pen points up
section)

MDO98 04.09.12

Figure 53. Locality 7.6: a) fine-banded BIF (pen as scale); b) layers up to 2 cm thickness in BIF (hammer as scale);
c) small-scale folds with northwest-plunging fold axes (pen as scale); d) felsic intrusions introduce complexity in
the BIF (hammer as scale)
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Locality 8.2: medium-grained
boudinaged amphibolite

Go along the edge of the salt lake to the west for 50 m
(MGA 718188E 6546173N).

Between Localities 8.1 and 8.2, the dominant rock type
is well-foliated amphibolite with minor intercalations
of ferruginous chert. At Locality 8.2, there are fine- to
medium-grained amphibolites, with an intense steeply
southwest-dipping foliation (Fig. 56a). The outcrop
exposes spectacular structures, which are quite complex
due to the interplay of disharmonic folding, boudinage and
shearing (Fig. 56b and c). The folding seems to pre-date
the latter events (Fig. 56d). Determination of the shear
sense is difficult: symmetric boudinage and clasts indicate
some flattening. Asymmetric shear-sense indicators (clasts,
shear bands, mica fish) are dominantly sinistral, although
dextral examples are readily evident.

Locality 8.3: folded ultramafic schists

From the last outcrop, go along the edge of the salt lake to
the southwest for about 100 m.

This outcrop is dominated by tremolitic and ultramafic
schist, characterized by mainly talc-, chlorite-, and
tremolite-bearing mineral assemblages. Local magnetite
porphyroblasts are up to 1 cm in size. The rocks exhibit
a steeply southwesterly dipping foliation (Fig. 57a) and
are, in places, intensely folded (Fig. 57b). In some of
the hinges, an axial-planar spaced cleavage dips steeply
towards the north-northeast (Fig. 57¢). The fold axes show
some orientation variation but mainly plunge towards the
northwest. The ultramafic rocks are flanked to the west by
amphibolites, before the outcrop is interrupted by a valley,
which is also marked by a large quartz vein. The rocks to
the east of the little valley belong to the eastern branch of
the belt, that is, the branch that lies between Marvel Loch
and Southern Cross. The sedimentary rocks on the western
side of the valley (see Locality 8.4) and all rocks farther to
the west represent the continuation of the western branch
of the greenstone belt, from the Transvaal deposit to the
west (Fig. 17). The area where both branches converge is
located in the valley (Fig. 57d).

Locality 8.4: garnet-bearing
metasedimentary rocks

From the last outcrop, go along the edge of the salt lake to
the southwest for about 70 m (MGA 718074E 6546046N).

At this locality, sedimentary rocks locally contain
abundant garnets (Fig. 58a). The rocks have a range
of dip directions but it is difficult to tell whether the
rocks are in situ. A prominent 10 m wide metachert unit
(MGA 718055E 6546003N) has subvertical bedding and a
southwest strike (Fig. 58b). The area between Localities
8.4 and 8.5 is dominated by sedimentary rocks with
possible local intercalations of mafic rocks.
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Figure 55. Locality 8.1: a) amphibolites show a steeply
southwest-dipping foliation (pen as scale);
b) boudinaged quartz veins and tension gashes in
fine-grained amphibolite (pen as scale)

04.09.12

MDO100

Figure 56. Locality 8.2: a) outcrop of foliated amphibolite (hammer points west); b) complex geometries
due to the interplay of folding, boudinage and shearing within amphibolites (pen points south);
c) boudinage within amphibolites; note the control of grain size on rheology (pen points south);
d) small-scale fold in fine-grained amphibolite with sheared fold limb (x2.5 ppl)
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Locality 8.5: amphibolites and tremolite
schist

From the metachert outcrop, go along the edge of the salt
lake to the southwest for about 220 m (MGA 717903E
6545849N).

Fine-grained amphibolite (Fig. 59a) and tremolite schist
(Fig. 59b) mark the end of the sedimentary package. The
rocks have a steep southwest-dipping foliation (235/75°),
and form part of the western ultramafic-mafic package of
the greenstone belt. The pale rocks east of the amphibolite
represent quartz-rich metasediments (Fig. 59c).

MDO101 04.09.12

Figure 57. Locality 8.3: a) outcrop of ultramafic schist with a southwest-dipping foliation (hammer as scale);
b) folds within ultramafic schist refold the main foliation (pen as scale); c) a second spaced axial
plane cleavage to the folds is developed within fold hinges (pen as scale); d) valley on the northern
edge of the salt lake where the eastern and western branches of the Southern Cross greenstone
belt converge (photo taken to the north)
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MDO102 04.09.12

Figure 58. Locality 8.4: a) outcrop of fine-grained, garnet-
bearing clastic sediments (pen as scale);
b) metachert outcrop with subvertical bedding
(hammer as scale)

Geological setting of mineral deposits in the Southern Cross district
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Figure 59. Locality 8.5: a) outcrop of fine-grained, foliated
amphibolite (hammer as scale); b) outcrop of
tremolite schist with a southwest-dipping foliation
(pen as scale); c) contact between fine-grained
amphibolite (to the east) and quartz-rich clastic
sediments (to the west; pen as scale)
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