PILBARA BIF-HOSTED
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- What are the characteristics of the Pilbara iron ore deposits? “11en 8 olieol ) NN 1180 . Nullagine
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- How did the deposits form?

- Which exploration tools are useful for their discovery? Figure 1. Iron ore deposit styles in the northern half of the Pilbara Craton. Iron ore occurrences are sourced from DMP's MINEDEX

database, June 2016. Geology is sourced from the 2016 geological map of Western Australia. Green polygons represent greenstone
belts and pink polygons indicate granites. Other colours represent Proterozoic and Phanerozoic rocks that surround the Pilbara Craton.
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® The Hamersley Basin hosts >76 % of Western Australia’s reported iron resources, whereas N ; 300 -
the Yilgarn and Pilbara Cratons contain about 12 and 11 %, respectively. 'N 1

e In the Pilbara Craton, primary BIF and supergene-enriched BlF-hosted iron deposits contain
>96 % of all iron resources in terms of their contained Fe. Primary magnetite iron deposits
have greater reserves, but the higher costs of refining commonly renders them sub-economic.
Supergene-enriched BIF ores are higher grade and the main target for exploration. Pisolitic,
detrital, and orthomagmatic Fe-V-Ti iron ore prospects are generally too small for mining

(Fig. 2).
® Pilbara iron ore deposits share common physical and chemical characteristics:

Iron ore styles in the Pilbara Craton

Figure 4. Structural architecture controls - folds and shear zones

Pisolite/CID Alteration History

Orthomagmatic ore | | o
Average - ® Early hypogene magnetite £ hematite + quartz ore zones are steeply dipping and extend to depths of

Fe (Wt%) 4 > 200 m, but are narrow (<10 m wide) and low-to moderate-grade (37-55 wt% Fe). Overprinting supergene
goethite £ martite ores are broader and high-grade, and they extend from surface to depths of about 100 m.
Only at Wodgina are the hypogene ore zones wide enough to be potentially economic (Fig. 5).
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Figure 2. Relative size of iron ore styles
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® BlFs of the 3022-3016 Ma Cleaverville Formation are the main host to high-grade / Shear or fault zone
iron ore deposits. They are relatively thick (up to 1 km) and more iron-rich (31-39 wt% Fe) =
compared with other major BIF units of the Pyramid Hill, Paddy Market and Cardinal 1 e
Formations (Fig. 3). 5
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3020 Ma: Deposition of the Cleaverville 2950-2940 Ma: North Pilbara orogeny. 2215-2145 Ma: Heated oxidized supergene 70-50 Ma: Early phase of recent supergene From 50 Ma to present: Late
Formation BIF within the George Creek Steeply plunging tight folds and fluids circulate through the top few enrichment of iron under tropical (wet) phase of supergene mineralization
basin. Local extensional growth faults. shear zones host Stage 1 magnetite. kilometres of the crust, resulting in the climate. Magnetite oxidized to martite and under a semi-arid, strongly

growth of coarse Stage 2 specular hematite deposition of Stage 5 goethite. seasonal climate, causing

and oxidation of magnetite to Stage 3 martite. deposition of Stage 7 goethite.

IRON ORE EXPLORATION STRATEGY FOR THE PILBARA CRATON

® Mapping: Use remote methods and field observations to identify fold hinges
in BIF and locate intersecting damage zones that served as pathways for

fluids to interact with BIF. Hypogene magnetite alteration may form stand- I\/Iapplng + Geochemistry Geophysics Mineral Systems Model
alone orebodies, but more commonly forms proto-ores with moderate iron (remote imagery and (surface and drill hole) (magnetics and gravity) (based on all available data)
enrichment along old structures that are locally reactivated and upgraded field observations)

during supergene alteration.

® Geochemistry from surface and drill hole samples: BIF ore across the M. Fo Critical Elements:
Pilbara Craton is universally enriched in Fe, LOI, P and depleted in Si. '
However, camp-specific geochemical signatures suggest the importance i . 1. BIF fertility
of establishing a baseline chemistry for BIF and countryrocks before _ . 5 Structural architect
iInterpreting geochemical gradients in a camp. 2 T | - SHUCHral architecture
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® Geophysics: supergene iron orebodies may be indicated by coincident o _ o -
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indgpendently ac}quired mapping and geochemical data to avoid false- il it TR 5. Preservation of ore bodies in grabens or
positive exploration targets. ™ underneath hard cap

® Mineral System model: Defines all mappable critical elements for formation
and preservation of a BIF-hosted high-grade iron ore body. BIF fertility is | | | | . . No “silver bullets”
indicated by the presence of a thick, Fe-rich primary BIF such as in the Felel aihgee Universal signatures (Fe, Si, LOI, P)  Demagnetised zones - -

: : . , o . . - Methodically build and test the model
Cleaverville Formation. Structural architecture maps broad damage zones Intersecting damage zones Camp-specific signatures Coincident gravity lows
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that intersect BIF and allowed interaction _of a Si undersaturated fluid with LmrgEnE mEgnEis Requires establishing a baseline iearaien wil Mod I’e?ill‘J]IeS > the cole | ut new
BIF to c_once.ntrate Fe, mos.t likely an oxidized fluid d_erlved frgm near surface chemistry independently acquired data S |
(meteoric fluids). Preservation of BIF-hosted ore bodies requires a stable - Greatest opportunity lies in discovering covered
landsurface to promote the modification of BIF without subsequent erosion orebodies: testing conceptual targets through
Fig. 8) _ _ _ _ drilling or remote methods
(Fig. 8). Figure 8. Exploration strategy for Pilbara BIF-hosted iron ore
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