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Event stratigraphy applied to 700 million 
years of Archaean crustal evolution, 
Pilbara Craton, Western Australia

by M. J. Van Kranendonk, R. H. Smithies, A. H. Hickman, L. Bagas, 
I. R. Williams, and T. R. Farrell

Abstract

New geochronological and geochemical data from the pre-2.80 Ga granite–
greenstone basement of the northern Pilbara Craton have been used to  
(a) erect a formal suite/supersuite stratigraphic scheme for its intrusive 
igneous rocks, and (b) revise the lithostratigraphy of its supracrustal 
succession. Previous divisions of the chiefly granitic intrusive rocks were 
informal, very generalized, and almost entirely based on intrusive and 
structural relationships. The three generations of granitic rocks recognized 
previously have now been replaced by eight supersuites and three suites. 
Four mafic intrusive suites have also been defined. Advances in the 
interpretation of the lithostratigraphy have come from a combination 
of detailed mapping and the acquisition of a large amount of precise 
geochronological data (chiefly from SHRIMP U–Pb zircon dating). 
Intrusive, volcanic, and mineralization events can be correlated with 
tectonic events, and major differences between the crustal evolution of the 
component terranes of the craton are recognized.

The pre-2.80 Ga basement in the northern Pilbara Craton evolved in four 
main phases: an early, largely cryptic phase of crust formation from 3.72 
to 3.53 Ga; a major phase of crustal development from 3.52 to 3.24 Ga, 
involving construction of a volcanic plateau from a succession of mantle 
plumes; a period of rifting of the margins of the nucleus of the craton at 
c. 3.24 – 3.16 Ga; and a late phase of crustal growth involving horizontal 
(arc-accretion) tectonics from 3.13 to 2.90 Ga. Several distinct tectono-
thermal events are recognized from 3.53 Ga onwards. These include: partial 
convective overturn of the middle and upper crust during mantle plume 
events at 3.43, 3.31, and 3.27 Ga; rifting of the Pilbara crust between 3.24 
and 3.16 Ga to produce three separate granite–greenstone terranes; intra-
oceanic arc construction at 3.12 Ga (Whundo Group); terrane accretion at 
c. 3.07 Ga; episodes of arc–continent collision between 3.02 and 2.90 Ga; 
and emplacement of post-tectonic granites at 2.89 – 2.83 Ga. 

KEYWORDS: Archaean, Pilbara Craton, lithostratigraphy, suite, 
supersuite, event stratigraphy.

Introduction

This paper presents the latest 
lithostratigraphic scheme for 
Archaean granite–greenstone rocks 
of the northern Pilbara Craton, and 
the first suite/supersuite scheme 
for its intrusive igneous rocks. 
The new interpretation is based 
on information from geological 
mapping, geochronology (more 
than 200 precise SHRIMP U–Pb 
zircon age dates), and geochemical 
studies. These new data have been 
mainly acquired since 1995 during a 
joint Geological Survey of Western 
Australia (GSWA) – Geoscience 
Australia (GA) project, with 
additions from external researchers. 
All ages, except where specifically 
referenced, are from GSWA records 
published by D. R. Nelson, as cited 
in Van Kranendonk et al. (2002), 
and in Geological Survey of Western 
Australia (2004).

Geology of the Pilbara Craton

The Pilbara Craton comprises two 
major tectonic units: an assemblage 
of pre-2.80 Ga granite–greenstone 
terranes, and an unconformably 
overlying succession of volcanic and 
sedimentary rocks that were deposited 
in the 2.77 – 2.40 Ga Hamersley 
Basin (Trendall, 1990). About 65% 
of the granite–greenstone basement 
is concealed by the generally flat-
lying Hamersley Basin succession; 
only in the northern part of the 
craton is this basement exposed 
over a very large area (Fig. 1). Here, 
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Geological Survey of Western Australia 2003–04 Annual Review

Figure 1. Generalized geology of the northern Pilbara Craton, showing main lithostratigraphic divisions of the West Pilbara and East Pilbara 
Granite–Greenstone Terranes and Kurrana Terrane, and the distribution of the De Grey Supergroup. Dotted line indicates a change in 
Nd-model age values within the east Pilbara (D. Champion, Geoscience Australia, 2004, written comm.)
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the craton contains three granite–
greenstone terranes separated by 
younger clastic sedimentary basins 
(Hickman, 2001; Van Kranendonk 
et al., 2002.). The c. 3.27 – 2.92 Ga 
West Pilbara Granite–Greenstone 
Terrane (WPGGT) is separated 
from the c. 3.72 – 2.83 Ga East 
Pilbara Granite–Greenstone Terrane 
(EPGGT) by the c. 2.97 – 2.94 Ga 
Mallina Basin. Southeast of the 
EPGGT, the c. 2.95 – 2.92 Ga 
Mosquito Creek Basin is faulted 
against the dominantly granitic, and 
as yet poorly documented, Kurrana 
Terrane.

Previous models of Pilbara 
evolution

Hickman (1983, 1984) interpreted 
the granite–greenstone basement 
of the northern part of the Pilbara 
Craton as a single coherent crustal 
unit that had been deformed in 
episodes of vertical tectonics (D1, 

D2), and a late phase of horizontal 
deformation (D3). Based on intrusive 
relationships and their structural 
history, Hickman (1983) recognized 
three main generations of granitic 
rocks, but further subdivision and 
detailed correlations between the 
various domical granitic complexes 
was prevented by a lack of precise 
radiometric age dating and 
geochemical data.

Tectonic models for the Pilbara 
Craton have evolved from the original 
concept of dominantly vertical 
tectonics (Hickman, 1983, 1984), 
to models of dominantly horizontal 
tectonics (Bickle et al., 1985; Krapez, 
1993; Barley, 1993, 1997; Krapez 
and Eisenlohr, 1998; Smith et al., 
1998), to more complex models 
involving intervals of both vertical-
dominated (i.e. mantle-plume driven: 
Hickman and Van Kranendonk, 
2004; Sandiford et al., 2004; 
Van Kranendonk et al., 2004a) and 
horizontal-dominated tectonics 

(e.g. Van Kranendonk et al., 2002; 
Hickman, 2004).

Van Kranendonk et al. (2002) 
described the EPGGT as the 
ancient nucleus of the craton, with 
a geological history from 3.72 to 
2.83 Ga. The structural style of 
this terrane, dominated by ovoid 
granitoid complexes mantled by 
synclinal greenstone belts, has been 
attributed to several episodes of partial 
convective overturn of middle and 
upper crust (Collins et al., 1998;  
Hickman and Van Kranendonk, 
2004; Sandiford et al., 2004; 
Van Kranendonk et al., 2004a).

Granitic rocks in the Pilbara Craton 
outcrop within large, domical areas 
that were referred to as ‘batholiths’ 
by Hickman (1983), although he 
emphasized that these structures 
were tectonically domed complexes 
containing granitic intrusions 
of widely differing ages. Griffin 
(1990) referred to these structural 
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domes as ‘granitoid complexes’. 
Van Kranendonk (1998) described 
the domical granitic complexes as 
litho-tectonic elements that did 
not necessarily reflect the original 
distribution of multi-component 
granitic rocks prior to deformation, 
as shown in a subsequent compilation 
of age data (Van Kranendonk et al., 
2002, fig. 5).

Stratigraphy

The lithostratigraphy of the Pilbara 
Craton has been divided into two 
supergroups and several unassigned 
groups and formations, as shown in 
Figure 2. The Pilbara Supergroup 
is developed in the EPGGT, where 
autochthonous relationships can be 
demonstrated through unconformable 
contacts and precise age dating. 
The WPGGT contains groups and 
formations that are not assigned to a 
supergroup, although the Roebourne 
Group is provisionally correlated 
with the Pilbara Supergroup for 
reasons described below. The De Grey 
Supergroup is correlated across the 
entire Pilbara Craton, as it lies with an 
unconformable basal contact on rocks 
of the EPGGT and WPGGT (Fig. 1).

Pilbara Supergroup

The Pilbara Supergroup in the 
EPGGT comprises four groups 
deposited between c. 3.52 Ga and 
c. 3.0 Ga. The oldest group is the 
Warrawoona Group, which spans 
100 m.y. from 3.52 to 3.43 Ga. The 
group is herein defined as comprising 
four subgroups: the Coonterunah 
(previously Coonterunah Group), 
Talga Talga, Coongan (new name), 
and Salgash Subgroups (Fig. 2).

Previously, the uppermost part of 
the Warrawoona Group included 
the Strelley Pool Chert, Euro Basalt, 
Wyman Formation, and Charteris 
Basalt in the Kelly Subgroup 
(Van Kranendonk et al., 2002), but 
these formations are now collectively 
ascribed to the Kelly Group 
because the base of the Strelley Pool 
Chert is a regional unconformity 
(Van Kranendonk et al., 2002 and 
M. Van Kranendonk, unpublished 
data). The rocks of these two groups 

contain inherited and detrital zircons 
as old as 3.72 Ga (Van Kranendonk 
et al., 2002, fig. 4), and basaltic rocks 
show geochemical evidence for crustal 
contamination (Green et al., 2000; 
Van Kranendonk and Pirajno, 2004), 
indicating the presence of an older 
basement. 

The c. 3.25 – 3.24 Ga Sulphur 
Springs Group was deposited 
unconformably on the Kelly Group 
(Van Kranendonk, 2000; Buick 
et al., 2002), and comprises, from 
base to top, the Leilira Formation, 
Kunagunarinna Formation, 
and Kangaroo Caves Formation 
(Van Kranendonk et al., 2002). The 
Six Mile Creek Formation of Van 
Kranendonk and Morant (1998), 
formerly included at the base of the 
group (Van Kranendonk, 2000), is 
now considered to belong to the Euro 
Basalt, based on similar geochemistry 
between these units and the fact that 
the unconformity marking the base 
of the group elsewhere is well defined 
as the base of the Leilira Formation 
(Van Kranendonk, 2000).

The Gorge Creek Group (Lipple, 
1975; Hickman, 1983, 1990; 
Van Kranendonk and Morant, 1998) 
is herein redefined as consisting 
of, from base to top, the Tank 
Pool Quartzite, Nimingarra Iron 
Formation, Pincunah Hill Formation, 
Corboy Formation, Paddy Market 
Formation, Honeyeater Basalt, and 
Pyramid Hill Formation (Fig. 2). The 
age of the group is unconstrained 
other than the base of the formation, 
which is gradational with the Sulphur 
Springs Group at Sulphur Springs, 
indicating a lower age of c. 3.235 Ga 
(Buick et al., 2002). The basal contact 
of the group varies from conformable 
to unconformable on older rocks. 
The top contact of the group is 
an unconformity with either the 
De Grey Supergroup or Mount Bruce 
Supergroup (Hamersley Basin).

The Golden Cockatoo Formation 
in the southwestern part of the 
EPGGT consists of metamorphosed 
clastic sedimentary rocks and banded 
iron-formation (BIF) that lie in 
(probable) unconformable contact 
with basement rocks of the Yule 
Granitoid Complex and in faulted 
contact with the Sulphur Springs 

Group (Van Kranendonk, 2003). 
Unpublished geochronological data 
from a quartzite horizon near the base 
of the formation suggest a maximum 
depositional age of 3192 ± 74 Ma 
(Nelson, D. R., Geological Survey 
of Western Australia, 2004, written 
comm.), which is close to the age of 
the Flat Rocks Suite of granitoid rocks 
emplaced during an interpreted rifting 
event (see Events in the northern 
Pilbara Craton) and within the age 
range of the Gorge Creek Group 
(Fig. 2).

The Budjan Creek Formation 
in the southeastern part of the 
EPGGT is a succession of clastic 
and felsic volcaniclastic rocks that 
unconformably overlies the Kelly 
Group (Bagas et al., 2004b). A 
volcaniclastic sample of the formation 
contains detrital zircons as young 
as 3228 ± 6 Ma, which is slightly 
younger than the age of the youngest 
components of the Sulphur Springs 
Group (c. 3235 Ma; Buick et al., 
2002).

The undated Copper Gorge 
Formation is also restricted to the 
southeastern part of the EPGGT 
(Bagas, in prep.). The formation 
consists of pillowed basalt and 
komatiitic basalt. It lies in 
unconformable contact with rocks of 
the Warrawoona and Kelly Groups to 
the north and is in fault contact with 
the younger De Grey Supergroup 
of the Mosquito Creek Basin to the 
south (Bagas, in prep.).

West Pilbara Granite−Greenstone 
Terrane

Supracrustal rocks in the WPGGT 
range in age from 3.27 to 3.01 Ga 
(Fig. 2). The WPGGT has a distinctly 
different structural style than the 
EPGGT, characterized by a prominent 
northeasterly structural grain (Fig. 1; 
Krapez, 1993; Hickman, 1997; 
Smith et al., 1998; Van Kranendonk 
et al., 2002; Hickman, 2004). This 
terrane is a collage of three separate, 
fault-bounded tectono-stratigraphic 
domains, each of which contains a 
unique stratigraphic succession and 
structural history that differs from 
that of EPGGT (Hickman, 2004), 
as well as two overlying sedimentary 
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Figure 2. Event histories for the West Pilbara and East Pilbara Granite–Greenstone Terranes and central Pilbara, showing deformational events, igneous supersuites and suites, lithostratigraphic 
units, and mineralization events
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basins, the Cleaverville and Whim 
Creek Basins. Designation of the 
Whim Creek Basin to the WPGGT 
is new, and based on geological data 
outlined below.

The main part of the terrane is 
transected by the 1 km-wide Sholl 
Shear Zone (SSZ) — a long-lived 
zone of early sinistral, and later 
dextral, transpressional shear strain 
(Hickman, 2004). North of the SSZ 
is the c. 3.28 – 3.25 Ga Roebourne 
Group, which is an ultramafic–felsic 
volcanic succession with overlying, 
subordinate clastic metasedimentary 
rocks. Isotopic data indicate that the 
group was deposited on c. 3.48 Ga 
crust, or was derived from a source 
region of this age (Sun and Hickman, 
1998), but the basal contact of 
the group is obscured by intrusive 
3.27 Ga tonalite and granodiorite, 
including the Karratha Granodiorite 
(K on Fig. 3).

South of the SSZ is the c. 3.13 – 
3.11 Ga (Horwitz and Pidgeon, 1993; 
Smith et al., 1998) Whundo Group 
— a juvenile stratigraphic assemblage 
of bimodal basaltic and felsic volcanic 
rocks that shows no evidence of 
contamination by crust older than 
3.28 Ga (Smith et al., 1998; Sun and 
Hickman, 1998) and that has no 
equivalent in the EPGGT succession. 
The Whundo Group (Fig. 2) is at 
least 10 km thick (Hickman, 1997), 
but neither the base nor the top is 
preserved. Hickman (1997) divided 
the group into four formations, 
based on lithostratigraphy. However, 
detailed geochemical analysis shows 
that the group consists of a much 
more complex volcanic succession, 
including a basal package of boninites 
that is interbedded with two distinct 
assemblages of calc-alkaline basalt to 
andesites (Smithies et al., in press). 
This package is overlain by a thick 
pile of tholeiitic basalts with arc to 
back-arc compositions. The tholeiites 
are in turn overlain by further calc-
alkaline lavas with well-defined 
negative correlations between large 
ionic lithofile elements (and La/Sm) 
and high field strength elements 
(Smithies et al., in press). Calc-
alkaline andesites are overlain by 
rhyolites, derived primarily through 
prolonged fractionation of tholeiitic 
magmas, and interbedded with 

adakitic lavas and Nb-enriched basalts 
— an association characteristic of 
arcs where slab melting contributes to 
metasomatism of the mantle wedge. 
This compellingly arc-like association, 
combined with the absence of felsic 
basement, the lack of any continental 
influence, the persistence of low  
Th/La ratios, and the faulted margin 
with a distinct terrane (Roebourne 
Group), points to an intra-oceanic arc 
setting for the Whundo Group.

The Roebourne Group is in tectonic 
contact across the Regal Thrust 
with the third domain, consisting 
of oceanic-type crust of the Regal 
Formation. Both the Roebourne 
Group and the Regal Formation 
include rocks at amphibolite facies 
metamorphic grade and were affected 
by D1 deformation (Hickman, 2001; 
Kiyokawa et al., 2002).

Cleaverville Basin

The Regal Formation and the 
Whundo Group are unconformably 
overlain by BIF, chert, and clastic 
sedimentary rocks of the c. 3.02 Ga 
Cleaverville Formation, which is 
unaffected by D1 deformation. The 
Cleaverville Formation lies both 
north and south of the SSZ, and 
thus provides a minimum age for 
the juxtaposition of the two domains 
and early sinistral shear deformation 
across the SSZ (Hickman, 1997, 
2004; Kiyokawa et al., 2002). The 
Cleaverville Formation was previously 
correlated with the Gorge Creek 
Group of the EPGGT (Hickman, 
1997), but new isotopic evidence for a 
c. 3.18 Ga crustal break in the western 
part of the EPGGT — an interpreted 
rift margin (see Events in the 
northern Pilbara Craton) — casts 
doubt on east–west correlations 
of any units deposited after this 
rifting event and prior to collision 
at c. 2.99 Ga. Thus the Cleaverville 
Formation is now interpreted to have 
been deposited in a separate basin, 
immediately preceding deposition of 
the Whim Creek Group.

Whim Creek Basin

The Whim Creek Group is a 
succession of a c. 3.01 Ga volcano-
sedimentary rocks deposited 
unconformably on the Cleaverville 

Formation and the Whundo Group 
in the Whim Creek Basin (Fig. 2; 
Smithies et al., 2001). The Whim 
Creek Group represents an arc-related 
basin fill deposited on continental 
crust (Pike et al., 2002), and has no 
known counterparts in the EPGGT. 
These rocks are unconformably 
overlain by the volcanic Bookingarra 
Group and clastic sedimentary rocks 
of the De Grey Supergroup within 
the intracratonic Mallina Basin (see 
below).

Kurrana Terrane

The Kurrana Terrane, immediately 
south of the Mosquito Creek Basin, 
includes undated greenstones within 
granitoid orthogneiss dated at 
c. 3.18 Ga. These rocks are tightly 
folded and are faulted against the 
Mosquito Creek Basin. Only the 
northernmost exposures of the 
Kurrana Terrane are shown on 
Figure 1, and larger exposures of the 
same terrane are interpreted to be 
present 150 km to the south within 
the Sylvania Inlier (Hickman, 2004). 
The Sylvania Inlier was not remapped 
during the GSWA–GA project, 
and precise geochronological and 
geochemical data are very limited.

De Grey Supergroup

The c. 2.97 – 2.92 Ga De Grey 
Supergroup (redefined from 
the De Grey Group, as used by 
Van Kranendonk et al., 2002) is 
an intracontinental succession that 
was unconformably deposited on 
deformed and deeply eroded rocks 
of the Pilbara Supergroup and rocks 
of the WPGGT across the Pilbara 
Craton. Rocks of the supergroup are 
present in three major depositional 
basins, including the Lalla Rookh 
Basin in the EPGGT, the Mallina 
Basin between the EPGGT and the 
WPGGT, and the Mosquito Creek 
Basin that separates the EPGGT from 
the Kurrana Terrane (Fig. 1).

Lalla Rookh Basin

Eroded and deformed remnants 
of the supergroup in the EPGGT 
are referred to as the Goldsworthy 
Group (Van Kranendonk et al., 
2002), and consist dominantly of 
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coarse-grained clastic sedimentary 
rocks. It is uncertain to what degree 
these sequences originally formed 
parts of a single intracratonic basin. 
Van Kranendonk and Collins (1998) 
presented evidence from structural 
geology for deposition of the Lalla 
Rookh Sandstone of the group during 
regional sinistral transpression dated 
at c. 2.940 Ga, but otherwise the 
Goldsworthy Group is undated.

Mallina Basin

The north-northeasterly trending 
Mallina Basin is more than 200 km 
long and up to 90 km wide (Fig. 1) 
and consists of the c. 2.97 – 2.94 Ga 
Bookingarra and Croydon Groups. 
The basal c. 2.97 Ga Bookingarra 
Group consists of volcaniclastic 
sedimentary rocks, siliciclastic 
sedimentary rocks, and basalts that 
unconformably overlie the Whim 
Creek Basin of the WPGGT (Pike and 
Cas, 2002). The overlying Croydon 
Group consists of largely siliciclastic 
rocks of the Constantine Sandstone 
and the Mallina Formation, and is 
dated at c. 2.95 – 2.94 Ga (Smithies 
et al., 1999, 2001).

Mosquito Creek Basin

The Nullagine Group, comprising 
the 2.95 – 2.92 Ga Mosquito Creek 
and Coondamar Formations (Fig. 2), 
was deposited in the shallow- to 
deep-water Mosquito Creek Basin 
between the EPGGT and the 
Kurrana Terrane (Fig. 1), possibly in 
a rift setting analogous to that of the 
Mallina Basin (see below). The group 
lies with unconformable contact 
on the EPGGT (Kelly Group) and 
Copper Gorge Formation along the 
northern margin of the basin, but is 
in faulted contact with the Kurrana 
Terrane to the south. Bagas (2004a 
— this Annual Review) discusses the 
composition and provenance of the 
Mosquito Creek Basin.

Intrusive rocks

Granitic rocks of the Pilbara Craton 
are herein divided into supersuites 
and suites, based on crosscutting 
relationships and structural fabric 
elements, geochronology, and 

geochemistry (Fig. 3; Van Kranendonk 
et al., 2004b). A supersuite scheme 
has been introduced following 
isotopic confirmation that different 
domical granitic complexes in the 
EPGGT contain similar age plutonic 
components (Van Kranendonk et al., 
2002; Hickman and Van Kranendonk, 
2004). The granitic complexes of the 
WPGGT lack evidence for tectonic 
doming, but are also multi-component 
bodies containing intrusions of similar 
age and chemistry. In addition to the 
multi-component granitic complexes, 
both terranes contain examples 
of single-component, subvolcanic 
intrusions (e.g. 3.46 Ga North Pole 
Monzogranite and 3.24 Ga Strelley 
Monzogranite in the EPGGT, and 
3.27 Ga Karratha Granodiorite in the 
WPGGT — N, S, and K respectively 
on Fig. 3). Significant results from the 
suite/supersuite classification scheme 
include the recognition that the  
3.48 – 3.45 Ga Callina Supersuite, 
the 3.44 – 3.42 Ga Tambina 
Supersuite, and the 3.32 – 3.29 Ga 
Emu Supersuite are exposed only in 
the EPGGT. The 3.27 – 3.24 Cleland 
Supersuite is present in both the 
EPGGT and the WPGGT, north of 
the SSZ, further supporting continuity 
of the two terranes at c. 3.24 Ga. 

Granitic rocks with intrusive ages of 
3.18 – 3.16 Ga (Flat Rocks Supersuite 
and Golden Eagle Orthogneiss) 
are restricted to the margins of the 
EPGGT and in the Kurrana Terrane, 
and probably relate to early rifting 
of the margins of the EPGGT in 
the present areas of the Mallina and 
Mosquito Creek Basins respectively 
(see Events in the northern Pilbara 
Craton).

A widespread suite of granitic rocks 
emplaced in the WPGGT at  
c. 3.01 – 2.97 Ga (the Maitland River 
Supersuite) is probably cogenetic with 
arc volcanism of the Whim Creek 
Group (Pike and Cas, 2002; Hickman, 
2004) and subsequent collision 
between the WPGGT and EPGGT 
(Fig. 4). Intrusive rocks within the 
Mallina Basin include a 2.95 Ga 
suite of high-Mg diorite (sanukitoid) 
intrusions (Smithies and Champion, 
2000), now collectively referred to 
as the Indee Suite, and widespread 
c. 2.95 Ga mafic–ultramafic sills and 
rocks with boninite-like compositions 

(Smithies, 2002), now assigned to the 
Langenbeck Suite. Light rare earth 
element enrichments in the parent 
magmas of these intrusions cannot 
be explained through assimilation 
of crust, and have been attributed 
to a mantle source. Smithies and 
Champion (2000) suggested that the 
mantle source was metasomatically 
enriched during a pre-3.00 Ga 
subduction event; subduction 
processes have previously been applied 
to both the c. 3.01 Ga Whim Creek 
Group (Pike and Cas, 2002) and the 
c. 3.12 Ga Whundo Group (Smith, 
2003). Both groups are interpreted to 
underlie parts of the Mallina Basin. 

Late- to post-tectonic (2.89 
– 2.83 Ga), Sn–Ta–Li bearing 
monzogranites of the Split Rock 
Supersuite form a northwest–southeast 
linear array of intrusions across the 
Kurrana Terrane and EPGGT (Fig. 3). 
These intrusions were emplaced 
immediately following north–south 
compressional deformation and gold 
mineralization in the Kurrana Terrane 
in the southeast at c. 2.90 Ga (Huston 
et al., 2002).

Events in the northern Pilbara 
Craton

The recent advances in subdivision of 
the supracrustal and intrusive igneous 
rocks across the northern Pilbara 
Craton has led to a much better 
understanding of the event history of 
the craton, as summarized in Figures 2 
and 4. Events prior to 3.27 Ga are 
restricted to the EPGGT.

Following an early, largely unpreserved 
history from 3.72 to 3.53 Ga, the 
main phase of crustal construction 
in the EPGGT began at 3.52 Ga 
with the development of a thick 
volcanic plateau (Warrawoona 
Group), founded on crust to 3.72 Ga 
(Van Kranendonk et al., 2002; 
Van Kranendonk and Pirajno, 2004). 
Volcanic plateau formation was the 
result of nearly 100 m.y. of nearly 
continuous, dominantly basaltic 
volcanism that was erupted in mafic–
felsic cycles of about 15 m.y. duration 
(Hickman and Van Kranendonk, 
2004). Within this history, felsic 
volcanism at 3.47 – 3.46 Ga was 
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Figure 4. Schematic event history for the northern Pilbara Craton between 3.5 and 2.8 Ga
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accompanied by the intrusion 
of Callina Supersuite tonalite–
trondhjemite–granodiorite (TTG) 
magmas as a sheeted sill complex to 
produce local crustal thickening and 
instigate the development of volcanic 
domes. Magmas were derived through 
melting of basalt, possibly during flat 
subduction around the margins of the 
developing plateau (Fig. 4; Smithies 
et al., 2003). The final stages of 
plateau construction at 3.46 – 3.43 Ga 
involved early stages of doming of 
some of the granitoid complexes, 
high-pressure melting of mafic crust 
(Cullers et al., 1993), and resultant 
felsic magmatism including intrusive 
rocks of the 3.44 to 3.42 Ga Tambina 
Supersuite (TTG) and rhyolites of 
the Panorama Formation. This felsic 
magmatism was followed by regional 
subaerial erosion (Buick et al., 1995) 
over a 75 m.y. period, in the absence of 
volcanism (Fig. 4). Quartz sandstone 
and stromatolitic carbonates of the 
Strelley Pool Chert were deposited on a 
regional unconformity as Earth’s oldest 
continental-shelf sequence at this 
time (Lowe, 1983; Buick et al., 1995; 
Van Kranendonk et al., 2002). 

Volcanism recommenced at c. 3.35 Ga 
and continued to 3.31 Ga with 
eruption of the Kelly Group, which 
is a sequence, more than 8 km thick, 
of basal olivine-spinifex-textured 
komatiite, middle tholeiitic and 
komatiitic basalt, and upper K-rich 
rhyolite. The components of this 
succession are typical products of a 
mantle plume erupted through pre-
existing continental crust. Widespread 
melting of pre-existing granitic rocks 
and the generation of the voluminous 
Emu Supersuite accompanied the 
end of Kelly Group volcanism at 3.32 
– 3.29 Ga, and accompanied major 
doming at c. 3.31 Ga (Collins et al., 
1998; Van Kranendonk et al., 2004a). 

The third major event in the Pilbara 
commenced at c. 3.27 Ga with 
deposition of the Sulphur Springs 
Group above a regional unconformity. 
As with the Kelly Group, the Sulphur 
Springs Group consists of a komatiite–
basalt–rhyolitic succession that is 
interpreted to represent the product 
of a mantle plume erupted through, 
and contaminated by, continental 
crust. Heat from this event caused 
widespread melting of pre-existing 

granitic rocks, generation of the 
3.27 to 3.24 Ga Cleland Supersuite, 
and local high-amplitude doming 
of granitic complexes. Volcanogenic 
massive sulfide deposits were also 
developed at this time (Morant, 1998).

Rifting may have commenced at 
this time (Vearncombe et al., 1998; 
Hickman, 2004), and by c. 3.16 Ga 
had probably evolved to produce 
northwest–southeast separation of the 
older part of the WPGGT (Roebourne 
Group) and possibly the Kurrana 
Terrane. Evidence for this event comes 
from a distinct supracrustal succession; 
and the Flat Rocks Supersuite in the 
southwestern part of the EPGGT: and 
Nd-isotope data that show a distinct 
change in Nd-model ages obtained 
from dominantly 2.9 – 2.8 Ga granites 
down the middle of the Yule and 
Carlindie Granitoid Complexes of the 
EPGGT (Fig. 1). The data indicate 
that granitoid rocks to the west of this 
line were generated from crust younger 
than 3.2 Ga, as opposed to granitoid 
rocks to the east that have model ages 
generally in the range 3.4 – 3.7 Ga, 
with a few that have slightly younger 
ages to c. 3.3 Ga (Champion, D., 
Geoscience Australia, 2004, written 
comm.). The data also imply that 
greenstones of the Pilbara Well and 
Wodgina greenstone belts may not be 
part of the Pilbara Supergroup, and 
thus they have been left as unassigned 
on Figure 1 until more information is 
obtained from these rocks.

Isotopic evidence indicates 
involvement of a c. 3.5 to 3.4 Ga 
crust in the evolution of the 3.28 to 
3.25 Ga Roebourne Group and the 
Karratha Granodiorite of the WPGGT 
north of the SSZ (Sun and Hickman, 
1998). On this basis, and because of 
similarities in the broad stratigraphy 
and age of eruption, the Roebourne 
Group and the Karratha Granodiorite 
of the WPGGT have been interpreted 
to be a rifted segment of the Sulphur 
Springs Group and Cleland Supersuite 
of the EPGGT (Hickman, 2004). 

From 3.24 Ga, the WPGGT 
evolved in isolation from the 
EPGGT, and underwent a different 
geological history (Smith et al., 
1998; Van Kranendonk et al., 2002; 
Hickman, 2004). At c. 3.13 Ga, the 
Whundo Group was erupted as an 

intra-oceanic arc (Smithies et al., 
in press). This exotic terrane was 
subsequently juxtaposed with the 
Roebourne Group and Karratha 
Granodiorite along the SSZ probably 
at c. 3.07 Ga, prior to deposition 
of the Cleaverville Formation. The 
continental-arc volcanism of the 
c. 3.01 Ga Whim Creek Group 
marks a period of subduction 
preceding oblique collision between 
the WPGGT and the EPGGT 
(Fig. 4). Smith et al. (1998) proposed 
subduction from the west during arc 
accretion, but an alternative possibility 
is closure of the ocean between 
Roebourne/Whundo amalgam and 
the EPGGT through west-dipping 
subduction. Collision between 
the WPGGT and the EPGGT is 
interpreted to have occurred at 
c. 2.99 Ga, which is the age of 
widespread granitoid rocks in the 
WPGGT (Maitland River Supersuite) 
and abundant detrital zircons in the 
Mallina Basin (Smithies et al., 2001). 
Subsequent phases of extension and 
compression from 2.97 to 2.94 Ga 
were accompanied by deposition 
of the clastic rocks of the De Grey 
Supergroup in the Mallina Basin, 
and intrusion of the geochemically 
varied rocks of the Sisters Supersuite 
across the central Pilbara and western 
parts of the EPGGT. This series of 
events was accompanied by diverse 
mineralization, including platinum-
group elements and gold.

Compressional deformation 
continued to c. 2.90 Ga along both 
the northwestern and southeastern 
margins of the EPGGT. During 
this period the Kurrana Terrane was 
tectonically juxtaposed against the 
Mosquito Creek Basin flanking the 
southeastern margin of the EPGGT. 
Isoclinal folding and thrusting 
within the basin was accompanied by 
epigenetic gold mineralization, and 
was followed by the emplacement of 
post-tectonic, highly fractionated, 
Sn–Ta–Li bearing granites of the 2.89 
to 2.83 Ga Split Rock Supersuite. The 
linear northwest–southeast trend of 
these intrusions suggest emplacement 
within a failed rift in the foreland 
to compressional orogeny across the 
Mosquito Creek Basin.
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