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Abstract
The Western Australian Mineral Exploration (WAMEX) database contains geochemical data provided to the Geological Survey of 
Western Australia (GSWA) in digital format by the exploration and mining industry. The WAMEX database is known to contain a 
significant amount of spurious data, including errors in unit reporting and incorrect assignment of analytes brought about mainly 
by errors in post-analysis data reporting and, in some cases, due to low accuracy of the chosen analytical technique. Significant 
time and cost challenges exist in manually identifying and correcting these issues. In this study, a set of deep-learning methods 
was applied to the harmonized surface and drillhole WAMEX datasets to identify (and replace) potential spurious occurrences in 
the data and estimate missing analyte values wherever possible. The method is entirely data-driven and, after the corresponding 
networks have been trained, allows the results to be obtained instantly. Deep-learning methods delivered good results at modest 
computational cost and, contrary to many other statistical methods, required no manual feature engineering. The results 
demonstrate the efficacy of the method for the different types of geochemical data included in the WAMEX database (i.e. surface 
vs drillhole sample media, and different laboratory analytical methods). The deep neural networks-based estimation approach may 
be particularly useful when applied to geographical regions in Western Australia where geochemical datasets are incomplete and 
access to new samples, or reanalysis of existing samples, is inhibited by time, physical access and cost constraints. The predicted 
values for analytes may benefit mineral explorers by indicating new regions of exploration interest, or simply by highlighting gaps 
in collected data — the latter informing future data collection strategies that reduce levels of uncertainty and exploration risk.

KEYWORDS: Data processing, drillhole data, geochemistry, neural networks, mineral exploration

Introduction
This Report presents the results of a three-month 
research project completed by Curtin University and the 
Geological Survey of Western Australia (GSWA) on deep-
learning methods applied to the identification of spurious 
geochemical data in datasets submitted by companies to 
GSWA as part of their statutory mineral exploration reporting 
obligations under the Western Australia Mining Act 1978. 

The submitted reports and any accompanying datasets 
are stored in the Western Australian Mineral Exploration 
(WAMEX) database. Downhole and surface geochemical 
datasets submitted in digital format (typically from the 
late 1990s) are imported into a separate database, the 
Mineral Drillhole Database (MDHDB), with minimal quality 
control for checking of locations and harmonization of 
projection datum. The datasets are held in the MDHDB as 
a series of tables for each type of sample observation, for 
example, geology, mineralogy, alteration, geochemistry. 
GSWA releases a public version of the MDHDB from which 
confidential data have been excluded. 

Geochemistry data in the MDHDB include assays and 
metadata from: a) surface rock chip; b) surface stream 
sediment; c) surface shallow drillhole; d) surface soil; and  
e) drillhole samples. The majority of the geochemical 
analyses are carried out by commercial laboratories and 
include a wide range of analytical techniques and analyte 
names. In this project, only publicly released data from 
the MDHDB was used, therefore the majority of the data 
used were reported to GSWA more than five years ago. 
References to WAMEX in the remainder of this report refer 
to geochemistry data in the MDHDB. 

The WAMEX (MDHDB) database contains a significant 
amount of spurious geochemistry data, including errors in 
unit reporting and incorrect assignment of analytes brought 
about mainly by errors in post-analysis data reporting and, 
in some cases, due to low accuracy of the chosen analytical 
technique (e.g. portable XRF-derived data commonly have 
lower accuracy than the majority of the laboratory-based 
analytical techniques). Some quality control measures were 
applied during data submission; however, the WAMEX data 
include at least half a billion analysed samples, varying 
between single and multi-element analyses. The proportion 
of spurious data and metadata is estimated to be up to 10%. 
Time and cost challenges exist in manually identifying and 
correcting these issues, which involves the identification of 
the samples in original reports and replacing errors with their 
true values.
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As part of the 2020–21 Accelerated Geoscience program 
(AGP), GSWA attempted to improve the usefulness of WAMEX 
geochemical data by making extracts of the database 
more internally consistent and interrogable. This involved 
developing a workflow to harmonize the original WAMEX 
near-surface and drillhole data (the method is described 
by Duuring et al., 2021), resulting in modified versions of 
the data with unified analyte fields and consistent unit 
conventions. However, the harmonized datasets still include 
spurious data. GSWA published a harmonized version of 
the WAMEX near-surface geochemical data (Duuring et 
al., 2021) that is accessible through the DMIRS Data and 
Software Centre (DASC) <https://dasc.dmirs.wa.gov.au/>. 
Similarly, a harmonized version of the WAMEX drillhole 
data may be sourced through GSWA’s dedicated web portal  
<https://wamexgeochem.net.au/>. This study uses public 
versions of the WAMEX near-surface (surface rock chip, 
surface stream sediment, surface shallow drillhole, and 
surface soil datasets) and WAMEX drillhole geochemical data. 
As both datasets are continually added to, the data used for 
this project was accessed on 1 April 2021.

Machine learning (ML) methods have been receiving 
increasing attention in the geoscience community in recent 
years. The main reason for this is the recent rise of deep-
learning (DL) methods that rely on the use of deep neural 
networks (DNN) that allow unprecedented performance 
levels in various tasks such as classification, regression, and 
clustering (Aljalbout et al., 2018; Chalapathy and Chawla, 
2019; LeCun et al., 2015). Several attempts have been made 
to apply ML/DL methods to geochemical data analysis. Most 
of the approaches use either shallow neural networks or 
methods such as support vector machines, regression trees 
and random forests. The latest developments in DL have only 
been marginally applied to this geochemical data analysis. 
The main differences between modern DNN and earlier 
neural networks, besides the obvious increase in hidden 
layers, are the activation functions commonly employed, 
the way weights in the hidden neurons are initialized, and 
the methods of regularization to prevent overfitting. DL 
algorithms also do not rely on human expertise as much 
as traditional ML methods. Multiple hidden layers of DNN 
(usually in the range of tens, sometimes hundreds) allow 
these models to automatically learn hierarchical feature 
representations of data with multiple levels of abstraction. 
This makes DNN a powerful tool to identify anomalies and 
reveal patterns in large-scale data.

The aim of this research project was to apply the recently 
developed DL models to identify spurious data and, where 
possible, estimate missing values within the five harmonized 
WAMEX geochemical datasets: surface rock chip, surface 
stream sediment, surface shallow drillhole, surface soil, 
and drillhole data. The DL techniques can be used to search 
for hidden dependencies in the geochemical data, and may 
assist mineral exploration targeting. However, it is important 
to appreciate that the learning is based on correlations and 
dependencies between analytes, independent of sample 
locations and analytical methods. Spurious samples are 
defined as samples with predicted analyte values that 
are very different from their measured values. Although 
tabulated versions of the ML geochemical data have not 
been publicly released because of their experimental nature, 
a list of samples was reported to GSWA at the conclusion of 
the project for further checking and for manual correction to 
the WAMEX database. 

Project data

WAMEX datasets
At the beginning of the project, GSWA provided the following 
publicly available versions of five harmonized WAMEX 
geochemical datasets extracted from the MDHDB: a) surface 
rock chip; b) surface stream sediment; c) surface shallow 
drillhole; d) surface soil; and e) drillhole data. Datasets a) to d) 
were obtained from the GSWA harmonized datasets as available 
on the DMIRS Data and Software Centre. The harmonized 
drillhole data (dataset e) was obtained from the GSWA’s 
dedicated web portal <https://wamexgeochem.net.au/>.

Company analyte column headings as supplied in submitted 
datasets were matched to standard analyte names in 
a match table. Scripts were run on the original WAMEX 
database to harmonize the company analyte names to the 
matched standard analyte names, and to recalculate assay 
values in the various company-supplied units of measure to 
a standard unit. Most of the samples had been analysed for 
a range of elements and, to a lesser extent, element oxides, 
by a variety of analytical techniques at commercial and, in 
some cases, in-house laboratories.

Data structure
The five harmonized WAMEX geochemical datasets included 
54 086 488 samples. Only 7 517 170 were surface samples 
and the remaining 46  569  318 were drillhole samples 
(Figure  1 and Table 1). The format of the surface and 
drillhole databases is slightly different, as described below.

Each sample in the four surface datasets contained 19 
information fields, such as sample identity (ID), A-number, 
coordinates and 124 geochemistry fields, namely:

	• 77 analytes that were reported as elements (e.g. Mn) 
and not as element oxides (e.g. MnO). These analytes 
are referred to below as main elements. Loss On Ignition 
(LOI) values were included.

	• 42 element oxides that were redundant because they 
correlated with the main elements (e.g. MnO was 
disregarded because it correlated with Mn). Exceptions 
to this rule exist when one of the paired values was 
missing, or if numerical errors were present.

	• 5 columns where no data were reported, that is, there 
were only null values for these fields in all five databases. 
These columns were Fe2O3, FeO, H2Oneg, H2Opos and 
LABnegNR.

Drillhole datasets contained 13 information fields and 158 
geochemistry fields per sample. The increase in the latter is 
mostly due to a larger number of element oxides reported in 
drillhole samples (up to 72). However, the number of main 
elements was the same as in the surface data (n=77).

Table 1 lists the number of samples in each dataset 
and the corresponding proportions of non-zero values. 
Although the surface stream sediment was the smallest 
dataset, it had the highest proportion of non-zero values 
(i.e. it has the highest proportion of useful information). The 
drillhole data had the least number of analytes reported.  

https://dasc.dmirs.wa.gov.au/
https://wamexgeochem.net.au/
https://wamexgeochem.net.au/
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Figure 1. 	 Comparison of the most commonly reported analytes in the 
following WAMEX datasets: a) rock chip; b) stream sediment;  
c) shallow drillhole; d) soil; and e) drillhole. The 17 analytes 
shown are elements that commonly occur in the top-20 
frequency list for each dataset. Transparent regions indicate 
negative values that correspond to the detection limit values

Dataset Number of samples Percentage of 
nonzero values*

Surface rock chip 402 770 18.26

Surface stream sediment 157 267 25.98

Surface shallow drillhole 1 549 340 15.27

Surface soil 5 407 793 14.99

Drillhole 46 569 318 6.86

Table 1. 	 Number of total samples and nonzero samples for the five WAMEX  
datasets (original data, including Fe2O3, FeO, H2Oneg, H2Opos, and 
LABnegNR columns). 

NOTE: *After error codes, large positive and negative values have been identified.
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Most of the main elements were reported in parts per 
million (ppm). In the four surface datasets, Platinum Group 
Elements (PGE) were reported in parts per billion (ppb), 
whereas LOI, sulfur, and most oxide values were reported 
in percent. 

Table 2 describes each individual subset of the drillhole 
data. Four subsets, namely water, mining techniques, large 
diameter, and costean were not considered in this study 
because they did not satisfy the quality and dataset size 
requirements for DL methods. The three largest subsets 
(reverse circulation, aircore and diamond drillhole) and the 
subset with the highest information content (sonic) were 
analysed individually. The remaining six subsets of the 
drillhole samples (percussion, vacuum, rotary mud, auger, 
rotary air blast, unknown) were merged into an “Others” 
dataset. Due to the high number of samples with only one 
analyte reported (e.g. gold) or only under three analytes 
reported, we used an entry rule for the drillhole samples to 
be included in the DNN analysis. Namely, we chose samples 
with no less than five reported analytes (excluding gold, 
which has poor correlations with other elements).

The nine harmonized WAMEX datasets used in this project 
are presented below:
	• Surface: 

o	 rock chip
o	 stream sediment
o	 shallow drillhole
o	 soil

	• Drillhole:
o	 reverse circulation
o	 aircore
o	 diamond drillhole
o	 sonic
o	 others (percussion, vacuum, rotary mud, auger, 

rotary air blast, unknown)

Figure 1 shows the frequency of the commonly reported 
analytes in each of the five harmonized WAMEX datasets. 
Overall, the most common analyte reported in WAMEX 
is gold (despite it only being the third most common 
analyte in the rock chip and stream sediment datasets). 
The other most frequently reported elements are the base 
metals (usually in the order of Cu, Zn, Pb, Ni) and arsenic. 
Gold, silver, antimony, and, to a lesser extent, cobalt and 
molybdenum have many values reported as small negative 
values (corresponding to the detection limit values). We 
can also observe three individual signatures in the analyte 
frequency, namely: a) rock chip and stream sediment data 
were somewhat similar; b) shallow drillhole and drillhole data 
were very similar; and c) soil data were most different of the 
five WAMEX datasets (e.g. many metals are not reported). 
These relationships between datasets are directly linked 
to the type of sample collected and the laboratory analysis 
method.

Data pre-processing
In this section, we describe the different steps of data 
cleaning applied to the datasets before they were delivered 
to DNN and were standardized.

Error codes

WAMEX datasets have two existing conventional error 
codes, namely –9999 to indicate null values and –6666 
used for samples with values greater than 100%. During the 
data pre-processing step, it was discovered that some other 
geochemical values appeared unnatural (e.g. –99990000, 
–5555, –8888). Although these spurious values represent 
a very small proportion of the total data for each analyte, 
they were removed to ensure correct data bounds. All 
unconventional error codes were treated as obviously 
spurious data and were replaced by Not a Number (NaN) 
values similar to the conventional error codes. The full list of 
error codes is given in Appendix 1.

CODE Drillhole type
Total number  
of samples

Number of samples 
included in the analysis

Comments

AC Aircore 9 257 867 2 167 156 Analysed as an individual dataset 

PERC Percussion 282 371 28 647 Merged into ‘Others‘ dataset 

WAT Water 11 789 – Excluded from this study

VAC Vacuum 426 023 157 396 Merged into ‘Others’ dataset 

RM Rotary mud 1 086 378 5859 Merged into ‘Others’ dataset 

MT Mining techniques 2790 – Excluded from this study

AUG Auger 104 312 29 143 Merged into ‘Others’ dataset

SON Sonic 15 140 9133 Analysed as an individual dataset 

RAB Rotary air blasting 4 680 142 1 031 279 Merged into ‘Others’ dataset

UNKN Unknown 907 359 83 396 Merged into ‘Others’ dataset

DD Diamond drillhole 8 564 058 2 255 821 Analysed as an individual dataset

RC Reverse circulation 21 209 940 8 605 312 Analysed as an individual dataset

LD Large diameter 11 332 – Excluded from this study

COST Costean 9817 – Excluded from this study

Table 2. 	 Description of WAMEX drillhole subsets 
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Element oxide issues

The WAMEX surface and drillhole datasets included up 
to 42 and 72 element oxide values, respectively. These 
values were not used in this study if the corresponding 
main analyte was also reported (e.g. MnO values were 
not used if their equivalent Mn values were reported). All 
element oxide – main element pairs were checked for 
inconsistencies by running correlation tests and checking 
the ratios of the corresponding elements. For the majority 
of such pairs, the ratio between the two numbers was 
constant (as listed in Appendix 2) and coincide with reported 
element-to-stoichiometric oxide conversion factors (e.g. 
conversion factors reported on university websites, such as  
<www.jcu.edu.au/advanced-analytical-centre/resources/
element-to-stoichiometric-oxide-conversion-factors>). 
However, it is noted that some pairs had mismatches 
(ranging from small, which can be attributed to rounding 
errors, to several orders of magnitude) between the actual 
and expected oxide values. There were 24  211 such 
mismatches in the rock chip data, 1092 in the stream 
sediment data, 9529 in the shallow drillhole data, 178 458 
in the soil data, and 50 031 in the drillhole data. Some of the 
minor mismatches were due to small rounding issues. For 
example, in some surface WAMEX samples, the coefficient 
of 1.2448 is used for zinc oxide, whereas in some other 
cases its reciprocal value (0.803397) is used for calculations 
(which results in a coefficient of 1.2447146).

Detection limits

Some samples in the WAMEX data had suspiciously small 
positive analyte values that were significantly smaller than 
their corresponding detection limits. Although it was not 
necessary to remove these values, the DL method was 
found to achieve better prediction accuracy results when 
these values were substituted with a standard set of 
corresponding detection limits for each analyte. Thus, in 
all datasets we used the lowest detection limits reported 
by either the WACHEM database, or the ALS and ActLabs 
commercial laboratories (their respective detection limits are 
summarized in Appendix 3).

Large positive values

In some very rare cases, reported analyte values were 
suspiciously large and even reached 1  000  000  ppm. 
Although such concentrations may not be precise, we 
decided to keep these values to preserve potentially naturally 
occurring anomalous element values in the data. PGE values 
higher than 1  000  000  ppb were removed from the DNN 
input because it was decided that they were unreasonably 
large to be naturally occurring. 

Negative values

Besides the error codes mentioned above, the WAMEX 
data included many other negative numbers that mostly 
corresponded to the detection limit values. These negative 
numbers (other than conventional and unconventional 
error codes) were replaced by half of their value, and were 
reported as positive numbers. However, when these values 
had a suspiciously large absolute value (e.g. –1000000 or 

–5000000  ppm, which is obviously spurious), they were 
replaced by NaN values in the DNN input. The threshold 
values for each analyte are listed in Appendix 3.

Standardization

The original data y was standardized by subtracting  
the corresponding mean µ and dividing by the standard 
deviation σ:                					   
	

						      (1)

This procedure was performed for each analyte of each 
dataset independently.

Method

Machine-learning models
We employed DL models that learn mapping from 
independent variables (input data) to dependent variables 
(output data). As the geochemical data involves mostly 
pure numerical input values without spatial or temporal 
dependence within one sample, we chose a fully connected 
neural network. The input features were processed by 
multiple dense layers, which enabled the creation of a 
hierarchy of feature detection and allowed the model to 
capture small-scale and large-scale features in the data. An 
important benefit of this DL approach was that no manual 
feature extraction or selection was needed as the most 
representative features were automatically learned during 
the training process. 

The hyperparameters of the network included the variables 
that determined its structure, such as the number of dense 
layers, the number of neurons at each layer, activation 
function employed, dropout values, and the variables 
that determined the training process (e.g. learning rate 
and number of epochs). Hyperparameters are typically 
chosen to avoid underfitting and overfitting on the data. For 
example, too deep neural networks can achieve very good 
performance in training although overfit the training data 
and thus generalize poorly to new inputs (Goodfellow et al., 
2016). This can be partially mitigated by using regularization 
techniques such as dropout (Srivastava et al., 2014). A 
practical measure of accuracy is how well the algorithm 
performs on data that it has not seen before. This ability is 
called generalization and it often determines the real-world 
performance of a method. 

In the following examples, hyperparameter tuning was 
performed using the k-fold cross-validation (Kohavi, 1995) 
and grid search process. In the k-fold cross-validation 
technique, the training set is split into k different groups. 
The algorithm iterates through these groups and, at each 
iteration, uses one of them as the validation set and the 
remaining k-1 groups as the training set to train the model. 
The process is repeated k times. In this study, we employed 
95% of each WAMEX dataset as the data given to the DL 
models for training using the k-fold cross-validation (k = 5). 

yz µ
σ
−

=

https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors
https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors
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The remaining 5% of the data (chosen randomly and called 
the test set below) was not shown to the DL models and 
was used to estimate the accuracy of the trained networks 
on new data (assuming that the solution is unknown for 
the test data). All the performance metrics reported below, 
unless otherwise stated, were calculated on these test 
datasets that were separate from the data used for training. 
Spurious data identification and missing values estimation 
were performed for both training and test subsets of each 
harmonized WAMEX dataset.

We used networks that had 10 to 12 hidden layers and 128 
to 256 neurons in each layer. A leaky rectified linear unit 
(LReLU) was used as the activation function at each hidden 
layer. The rectified linear unit (ReLU) activation function 
and its variants (Xu et al., 2015) are a common choice for 
convolutional networks and allow high accuracy in many 
other types of networks. The main benefits of ReLUs are 
sparsity, reduced likelihood of vanishing gradient, better 
convergence performance, and cheap computational cost. 
The LReLU variant was chosen instead of standard rectified 
linear units to avoid the so-called ReLU problem (Maas et al., 
2013), which arises because standard ReLU functions return 
zero values from negative inputs – potentially resulting in a 
large part of the network that stops learning. A dropout of 
0.05 – 0.15 is applied after each layer, except the last one. 
These choices were made based on an extensive series of 
experiments for each scenario. 

For optimization, we employed the Adam algorithm (Kingma 
and Ba, 2014), which is a common choice due to its 
computational efficiency and fast convergence. The majority 
of the standard optimization algorithms provide similar 
performance (Puzyrev, 2019). The implementation used 
the open-source software library TensorFlow (Abadi et al., 
2016) and scikit-learn (Pedregosa et al., 2011). The training 
was performed on two systems equipped with NVIDIA 
Tesla V100 and P100 GPUs and took several days for the 
WAMEX datasets. Once trained, the networks can be used 
on a mid-range laptop/desktop graphics card. For example, 
the missing data estimation and spurious samples detection 
procedures reported here were performed on a mid-range 
GTX 940MX card (released in 2016) and took between 
several minutes (stream sediment data) to approximately 
two hours (soil data) to process.

Accuracy metrics
Training a neural network is an optimization problem 
equivalent to finding the minima of the loss function, which 
measures the accuracy of the predicted model. Choosing 
a loss function that leads to the desired behaviour of 
the method is an important task. Two common metrics 
that measure accuracy for continuous variables without 
considering their direction are the mean absolute error (MAE) 
and mean squared error (MSE). The latter is usually preferred 
when large errors are undesirable. MSE is a quadratic 
scoring rule (equivalent to the difference in L2 norm) that 
squares the errors before they are averaged, thus giving a 
relatively high weight to large errors:

							     
	 (2)

Here zi and ẑ i denote, respectively, the normalized 
estimated and true values for each sample calculated using 

Equation  (1). The neural network is trained using the root 
mean squared error (RMSE) as the loss function, which is a 
common choice for continuous variables.

As additional quality metrics, we used several absolute and 
relative error metrics. The first one is the mean squared error 
for denormalized values (i.e. returned back to original range). 
For convenience, we used the square root. The RMSE metric 
is calculated as:

				    			 
	 (3)

Here yi and ŷ i denote, respectively, the denormalized 
estimated values and true values (i.e. original values of the 
analyte) for each sample. The RMSE is an absolute error 
measure that can range from 0 to infinity and is indifferent to 
the direction of errors. It is also dependent on the magnitude 
of the variables, which varies significantly for different 
analytes in geochemical data. Thus, the RMSE is not 
sufficient for a full evaluation of the accuracy of the results. 

A more useful error metric is the relative metric called 
the symmetric mean absolute percentage error (SMAPE). 
This metric is independent of the scale and measures the 
accuracy based on percentage errors as follows:

				    		  	
(4)

The right-hand denominator here represents the average 
of the actual value and the forecast, which avoids division 
by zero when true values are zero. For other advantages of 
SMAPE over the non-symmetric mean absolute percentage 
error (MAPE), we refer the reader to Tofallis (2015). For small 
errors, both MAPE and SMAPE metrics are very similar; see 
Ghommem et al. (2021) for an example. The SMAPE metric 
formulated as Equation (4), which is a commonly used 
formulation, has a lower bound of 0% and an upper bound 
of 200%. Over-forecasts and under-forecasts are not treated 
equally (in a linear sense) by the SMAPE metric; however, 
their ratios are. For example, an overestimation of factor 3 
and an underestimation of factor 3 both result in the same 
SMAPE value (100%).

To quantify the correlation between the predicted and 
true values, we reported the commonly used coefficient 
of determination (R2) and (less commonly used although 
potentially more powerful) concordance correlation 
coefficient (CCC) proposed by Lin (1989). R2 determines 
the proportion of the variance in the dependent variables 
that is predictable from the independent variables and is 
formulated as:

							     
			   (5)
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The CCC measures the concordance between two sets of 
values to quantify the agreement between them (Lin, 1989). 
It is formulated as:

							     
(6)

where ρ is Pearson’s correlation coefficient between the 
two variables. CCC cannot exceed the absolute value of ρ 
between the same datasets and also ranges from –1 to 
1, with perfect agreement at 1. CCC often produces more 
meaningful scores compared to R2 and other correlation 
measures. There is no strict agreement on how to interpret 
CCC values, although a common approach is to consider 
positive values less than 0.2 as having no concordance and 
values greater than 0.8 as having good concordance.

Results
This section reports the main statistics for spurious data 
(anomaly) detection and missing data predictions, and 
provides several examples.

In these experiments, we trained the estimating and anomaly 
detecting DNN separately for each analyte in each of the 
nine harmonized WAMEX datasets. Combining data from 
different datasets, for example merging the rock chip and 
soil data, led to a significant decrease in prediction accuracy. 
Analytes that had less than 100 non-zero values for a given 
set were excluded from the procedure due to lack of data, 
namely: C, CO2, F, I and Ir. 

The soil dataset lacked data for Al, Ba, Be, Bi, Br, Ca, Cd, Ce, 
Cl, Cr, Cs, Dy and Er.

In the digital outputs containing spurious data, and in the 
figures shown below, we used the following three-colour 
system to indicate predictability for each analyte. Green 
values refer to high predictability because they have SMAPE 
errors below 50% (equal to an overestimation of factor 5/3 
or an underestimation of factor 3/5). Yellow values have 
moderate predictability with SMAPE errors between 50% 
and 100% (factor 3 for overestimation or underestimation). 
SMAPE values above 100% are red to indicate low 
predictability. True values used in SMAPE calculations, 
and shown on the plots, are the values reported in the 
harmonized WAMEX datasets and may include errors. For 
example, the most common reasons for large errors arose 
in the harmonization process where units were sometimes 
incorrectly assigned (e.g. ppb reported as ppm) and due to 
incorrect mapping of analytes. 

Prediction accuracy – examples from 
stream sediment data
Table 3 shows the accuracy metrics, Equations (2) to (6), for 
each analyte of the test subset of the stream sediment data. 
Although it was the smallest dataset (157  267 samples), 
the stream sediment dataset had the highest information 
content and achieved the best accuracy metrics for most 
analytes. In terms of analyte accuracy, the observed 
distribution for the stream sediment dataset is qualitatively 

similar to the other WAMEX datasets. The rare earth 
elements (REE) achieved the highest accuracy on the test 
data due to very high correlations within this group (i.e. an 
unknown value of one REE can be estimated from several 
known values of other REE). Some analytes (Br, Cl, I and, to 
a lesser extent, C and LOI) were rarely reported in the stream 
sediment data, which results in larger SMAPE errors. Gold 
was often reported; however, its predictability is normally 
the lowest among other common analytes. Silver, As and Hg 
were the analytes with the next lowest predictability.

Figure 2 shows a typical graphical example of a DNN-based 
estimation, in this case showing predicted nickel values 
vs the harmonized nickel values (labelled True) from the 
test stream sediment dataset, together with their relative 
errors (i.e. the corresponding SMAPE plot). For nickel, the 
predictability is quite high across all ranges of values, which 
vary by almost seven orders of magnitude. There is no 
observable bias in the nickel estimation. The SMAPE plot 
shows a common pattern of having low errors in the middle 
zone, where the majority of the samples are located, and 
higher errors at both the low- and high-end groups of the 
samples.

In Figures 3 and 4, we show similar estimations for stream 
sediment samples; however, we consider two elements that 
have a lower predictability than base metals, namely silver 
and arsenic. Despite larger error metrics, the DL method 
could reliably distinguish low-content samples from high-
content ones (which also means that severe spurious data 
anomalies are almost absent in this dataset; for example, 
only a few samples were mismatched by two orders of 
magnitude or more, while for other datasets, this number 
was higher). The SMAPE plots demonstrate that there were 
larger differences in the ranges where there were fewer 
training data. Vertical clusters seen in silver (Fig. 3) and, to 
a lesser degree, in arsenic (Fig. 4) distributions, correspond 
to the actual data being rounded (e.g. 0.01, 0.005, 0.001). 
Both these elements have a similar number of spurious 
data anomalies and almost the same average SMAPE (32%).
Correlation metrics were significantly better for arsenic, 
which can be explained by the higher continuity of its actual 
values (i.e. fewer reported values were rounded), and the 
overall data distribution.

An example of an analyte with high predictability is given in 
Figure 5 for neodymium, which achieved the lowest error 
metrics for the stream sediment data. Such high prediction 
accuracy is explained by very strong correlations in the 
REE group. Most of these elements achieved similar high 
accuracy. The largest errors among REE were typically for 
scandium, yttrium, lanthanum, cerium and lutetium (although 
some other REE had strong spurious data anomalies, 
particularly in the drillhole data).

Comparison of the prediction 
accuracy between the harmonized 
WAMEX datasets
In Table 4, we report the average prediction accuracy for all 
analytes from the four surface harmonized WAMEX datasets 
and five categories of harmonized WAMEX drillhole datasets. 

( )
ˆ

22 2
ˆ ˆ

2
ˆCCC( , ) y y

y y y y

y y
ρσ σ

σ σ µ µ
=
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ID Analyte Normalized MSE RMSE CCC R2 SMAPE (%)

1 Ag 2.45E-03 8025.374 0.198 0.158 32.194

2 Al 1.62E-04 567766.958 0.966 0.932 7.909

3 As 1.14E-03 2055.971 0.879 0.793 31.918

4 Au 4.29E-03 262.900 0.270 0.131 58.412

5 B 4.50E-03 850.288 0.784 0.655 29.789

6 Ba 4.32E-04 10533.831 0.888 0.791 18.623

7 Be 2.39E-04 120.821 0.400 0.260 11.191

8 Bi 6.88E-04 676.912 0.457 0.317 24.451

9 Br 6.51E-04 14078.728 0.917 0.871 28.065

11 Ca 9.47E-04 339074.874 0.884 0.750 22.042

12 Cd 7.33E-04 106.390 0.658 0.593 17.152

13 Ce 4.80E-05 169055.702 0.985 0.974 8.248

14 Cl 8.71E-03 5535.807 0.246 0.127 59.954*

15 Co 3.10E-04 18217.137 0.873 0.798 18.438

17 Cr 3.24E-04 1841121.717 0.980 0.964 21.722

18 Cs 2.00E-04 61.241 0.967 0.937 14.105

19 Cu 5.65E-04 5598.242 0.658 0.514 24.753

20 Dy 3.00E-05 262.591 0.993 0.987 4.880

21 Er 2.00E-05 53.603 0.999 0.997 4.567

22 Eu 6.70E-05 31.498 0.994 0.988 7.417

24 Fe 6.91E-04 212247.644 0.936 0.879 15.329

25 Ga 7.00E-05 118.976 0.971 0.940 7.699

26 Gd 3.30E-05 16684.453 0.983 0.969 5.748

27 Ge 1.48E-04 17.449 0.998 0.995 6.993

28 Hf 7.70E-05 227.063 0.975 0.940 8.971

29 Hg 7.91E-04 10148.933 0.852 0.805 34.770

30 Ho 3.50E-05 113.250 0.948 0.921 4.606

31 I* 1.51E-03 22.086 0.853 0.426 35.527

32 In 1.11E-03 5.216 0.794 0.739 18.157

33 Ir 5.65E-04 4065.947 0.653 -0.052 7.174

34 K 3.63E-04 48316.390 0.916 0.809 12.778

35 La 4.50E-05 34982.742 0.993 0.984 8.276

36 Li 2.07E-04 431.109 0.945 0.900 14.795

37 LOI 2.04E-03 18.494 0.668 0.502 23.350

38 Lu 3.76E-04 10059.679 0.886 0.751 12.545

39 Mg 2.95E-04 721668.024 0.958 0.917 19.050

40 Mn 4.01E-04 774760.265 0.876 0.802 20.946

41 Mo 6.69E-04 13083.665 0.990 0.978 26.215

42 Na 6.82E-04 307497.939 0.835 0.563 20.097

43 Nb 3.11E-04 2144.255 0.949 0.910 17.478

44 Nd 1.60E-05 3049.869 0.990 0.981 3.962

45 Ni 3.19E-04 5231.087 0.880 0.799 19.861

46 Os 2.19E-04 0.058 0 -inf** 0.735

47 P 3.42E-04 70006.885 0.997 0.994 16.606

48 Pb 4.79E-04 2044.994 0.721 0.606 22.167

49 Pd 2.60E-03 11894.992 0.945 0.896 29.880

50 Pr 1.50E-05 720.498 0.994 0.986 4.110

51 Pt 1.36E-03 143578.322 0.014 0.012 22.759

52 Rb 2.11E-04 628.979 0.990 0.980 11.165

53 Re 2.50E-04 17.303 0.958 0.932 9.388

54 Rh 9.50E-05 0.269 0 -inf** 2.620

55 Ru 2.71E-03 14207.117 0.512 0.272 27.200

56 S 1.92E-03 53.215 0.989 0.975 27.823

57 Sb 3.56E-04 10103.006 0.972 0.954 24.348

58 Sc 1.28E-04 94.521 0.982 0.965 9.284

59 Se 6.79E-04 18.055 0.967 0.933 8.382

60 Si 7.60E-04 784680.080 0.929 0.864 15.145

61 Sm 2.90E-05 524.003 0.993 0.986 4.724

62 Sn 2.84E-04 207.300 0.721 0.488 15.108

63 Sr 3.04E-04 1213.624 0.964 0.930 15.326

64 Ta 2.79E-04 195.815 0.950 0.909 17.309

65 Tb 2.00E-05 71.689 0.990 0.978 4.490

66 Te 3.23E-04 3570.517 0.548 0.506 11.269

67 Th 1.84E-04 14639.574 0.970 0.941 15.496

68 Ti 3.93E-04 747602.823 0.845 0.631 19.912

69 Tl 2.03E-04 15452.215 0.844 0.793 13.878

70 Tm 2.60E-05 361.019 0.987 0.972 5.601

71 U 1.30E-04 6799.181 0.949 0.909 14.818

72 V 1.87E-04 7422.136 0.825 0.740 12.803

73 W 8.56E-04 23084.175 0.840 0.691 23.931

74 Y 8.80E-05 905.807 0.997 0.993 8.013

75 Yb 4.30E-05 77.562 0.995 0.989 6.246

76 Zn 4.12E-04 205178.194 0.979 0.958 22.444

77 Zr 1.04E-04 16158.367 0.898 0.853 12.199

Table 3. 	 Accuracy metrics, based on Equations (2) to (6), for the stream sediment data measured on the 5% randomly extracted test data 

Red indicates the analytes with the largest errors and poorest predictability. Light-blue 
denotes the rare earth elements (which typically have high predictability). Light-green 
shows other elements with a moderate predictability. Elements #10 (C), #16 (CO2) and 
#23 (F) were excluded from the estimation due to the very low number of samples 
where these elements are reported

* Cl and I are in the list but are not highlighted with red due to insufficient samples 
(especially compared to red Ag, As, Au and Hg)

** Os and Rh have their CCC equal to zero and R2 minus infinity due to all actual values 
in the test dataset being the same
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Figure 2. 	 Nickel predictions: a) estimated Ni values vs the corresponding 
true (harmonized) values for each sample in the test stream 
sediment dataset. Green, yellow and red denote the 0–50%, 
50–100% and 100–200% SMAPE bands, respectively;  
b) SMAPE for individual samples (blue circles) and smoothed-
over averaged sample values (red lines). The horizontal 
dashed line shows the corresponding average SMAPE over 
the entire test dataset. The smoothed red curve is obtained by 
1D interpolation of individual samples to 1000 points evenly 
spaced on a log scale and a subsequent smoothing with a 
Savitzky-Golay filter (Savitzky and Golay, 1964) with a window 
length of 5 and a degree 2 polynomial (Virtanen et al., 2020) 
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Figure 3. 	 Silver predictions: a) estimated Ag values vs their corresponding 
true (harmonized) values for each sample in the test stream 
sediment dataset. Green, yellow and red denote the 0–50%, 
50–100% and 100–200% SMAPE bands, respectively;  
b) SMAPE for individual samples (blue circles) and smoothed-
over averaged sample values (red lines). The horizontal dashed 
line shows the corresponding average SMAPE over the entire 
test dataset
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Figure 4. 	 Arsenic predictions: a) estimated As values vs their 
corresponding true (harmonized) values for each sample 
in the test stream sediment dataset. Green, yellow and red 
denote the 0–50%, 50–100% and 100–200% SMAPE bands, 
respectively; b) SMAPE for individual samples (blue circles) 
and smoothed-over averaged sample values (red lines). The 
horizontal dashed line shows the corresponding average 
SMAPE over the entire test dataset
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Figure 5. 	 Neodymium predictions: a) estimated Nd values vs their 
corresponding true (harmonized) values for each sample 
in the test stream sediment dataset. Green, yellow and red 
denote the 0–50%, 50–100% and 100–200% SMAPE bands, 
respectively; b) SMAPE for individual samples (blue circles) 
and smoothed-over averaged sample values (red lines). The 
horizontal dashed line shows the corresponding average 
SMAPE over the entire test dataset
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The surface stream sediment and surface shallow drillhole 
datasets had the highest prediction accuracy, indicated by 
all three error metrics used, whereas the surface soil dataset 
had slightly higher average SMAPE, and lower CCC and R2 
scores. Most spurious data were detected in the surface 
rock chip, drillhole aircore, and drillhole “Others” datasets. 
For both drillhole datasets, this can be explained by a lower 
ratio of reported:missing values in the data (see Table 1). In 
contrast, the surface rock chip dataset had a higher reporting 
ratio. Another reason for the poor performance can be that 
these datasets are not as homogeneous, that is, they display 
mixing of data obtained from multiple analytical methods 
(more results from portable XRF analyses, which tend to 
have poorer accuracy than laboratory-derived data). The 
highly accurate, low detection-level analytical techniques 
(typically used for surface soil and stream sediment 
sampling) combined with the large proportion of fine sample 
fraction may also contribute to the comparatively low 
average SMAPE values.

Table 5 shows the prediction accuracy for different groups 
of elements for the four surface and five drillhole WAMEX 
datasets. The base metals predictions delivered high 
accuracy (except for rock chip data and the five drillhole 
sets where average errors were higher). Precious metals, on 
average, had higher errors. The possible reasons for this are 
many negative values (below detection limit) in the reported 
gold and silver, and poor natural correlation between gold 
and other elements (i.e. even Ag and Pt are poorly correlated 
with Au). REE were estimated with very high accuracy 
(SMAPE; 4 – 6.5%) in the majority of the cases; the only 
exceptions can be explained by either the small size of the 
dataset (drillhole sonic; 16.6%) or the heterogeneity of the 
samples (surface rock chip and drillhole “Others”, 10.61% 
and 9.52%, respectively).

Test dataset Average 
CCC Average R2 Average 

SMAPE

Surface rock chip 0.728 0.514 31.315

Surface stream sediment 0.827 0.754 16.884

Surface shallow drillhole 0.849 0.708 17.798

Surface soil 0.764 0.639 20.790

Drillhole sonic 0.823 0.737 26.891

Drillhole diamond 0.811 0.712 25.829

Drillhole aircore 0.755 0.674 31.075

Drillhole reverse circulation 0.804 0.719 30.447

Drillhole ‘Others’ 0.764 0.674 31.031

NOTE: Non-weighted values are used; hence, each analyte has an equal contribution to the average 
score. Analytes that do not have enough data for prediction are not included in the average score

Table 4. 	 Average CCC, R2 and SMAPE metrics calculated on the test 
subsets of the four surface and five categories of drillhole 
WAMEX datasets 

Spurious data detection – examples 
from WAMEX drillhole data
All potentially spurious samples detected in the harmonized 
WAMEX datasets (including their training and test parts) 
were reported in nine reports to GSWA (i.e. one report per 
dataset). In this section, we provide examples of spurious 
data. Surface stream sediment data displayed the least 
number of suspicious elements (which did not form obvious 
clusters) compared to the other datasets.

Figure 6 shows an example of DNN-based estimations for 
aluminium in the test drillhole aircore dataset. The accuracy 
of the predictions was significantly lower for this metal 
compared to most of the other datasets. For example, the 
average SMAPE was more than three times higher compared 
to the surface stream sediment data. Although this can be 
explained by several factors (e.g. low information content in 
drillhole data, see Table 1, or more measurement/reporting 
errors), another interesting feature is worth mentioning. The 
dataset had a cluster of severely overestimated samples 
near the detection limit. Such suspicious vertical lines have 
been observed for other metals, such as barium, lanthanum, 
manganese and scandium, across the drillhole datasets. 
Most of these potentially spurious samples originated from 
relatively few industry reports submitted to the WAMEX 
database. The common vertical trend demonstrates that 
the values reported in the database are around the detection 
limits, whereas the DNN predictions suggest much higher 
concentrations (see the highlighted vertical line in Fig. 6). 
The most likely reason for such high mismatch is errors in 
unit reporting (confirmed for at least a representative subset 
of example data by comparing the potentially spurious data 
against their reported values in the original WAMEX reports).

Figures 7 to 9 show similar clusters of potentially spurious data 
found in the DNN-based estimations for lanthanum, scandium 
and cobalt in the test drillhole reverse circulation data. 

Test dataset
Average SMAPE

Ag/Au/Pt Cu/Ni/Pb/Zn REE (6)

Surface rock chip 53.33 48.75 10.61

Surface stream sediment 37.79 22.31 4.12

Surface shallow drillhole 40.65 25.17 4.04

Surface soil 43.24 28.11 6.52

Drillhole sonic 50.42 29.34 16.60

Drillhole diamond 39.51 42.04 5.69

Drillhole aircore 45.70 41.06 6.32

Drillhole reverse circulation 45.27 45.67 6.36

Drillhole ’Others’ 50.27 44.38 9.52

Table 5. 	 Average SMAPE values for three different groups of elements 
in the test subsets of the four surface and five drillhole WAMEX 
datasets 

NOTE:Non-weighted values are used within each group
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Figure 6. 	 Aluminium predictions: a) estimated Al values vs their 
corresponding true harmonized values for each sample of the 
test drillhole aircore dataset. Green, yellow and red denote the 
0–50%, 50–100% and 100–200% SMAPE bands, respectively. 
The spurious data region is denoted with the red oval; b) SMAPE 
for individual samples. The horizontal dashed lines show the 
corresponding average SMAPE over the entire test dataset

Figure 7. 	 Lanthanum predictions: a) estimated La values vs their 
corresponding true harmonized values for each sample of the 
test drillhole reverse circulation dataset. Green, yellow and red 
denote the 0–50%, 50–100% and 100–200% SMAPE bands, 
respectively. Two spurious data regions are denoted with the 
orange and purple ovals; b) SMAPE for individual samples. 
The horizontal dashed lines show the corresponding average 
SMAPE over the entire test dataset
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Figure 8. 	 Scandium predictions: a) estimated Sc values vs their 
corresponding true harmonized values for each sample of the 
test drillhole reverse circulation dataset. Green, yellow and red 
denote the 0–50%, 50–100% and 100–200% SMAPE bands, 
respectively. Two spurious data regions are denoted with the 
orange and purple ovals; b) SMAPE for individual samples. 
The horizontal dashed lines show the corresponding average 
SMAPE over the entire test dataset

Figure 9. 	 Cobalt predictions: a) estimated Co values vs their 
corresponding true harmonized values for each sample of the 
test drillhole reverse circulation dataset. Green, yellow and red 
denote the 0–50%, 50–100% and 100–200% SMAPE bands, 
respectively. Two spurious data regions are denoted with the 
orange and purple ovals; b) SMAPE for individual samples. 
The horizontal dashed lines show the corresponding average 
SMAPE over the entire test dataset
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These analytes differ from the other analytes in the 
reverse circulation data due to large clusters of both 
underestimations and overestimations. In particular, 
cobalt (Fig. 9) has a collection of samples with the same 
exploration (A-number) report, with values approximately 
four orders of magnitude smaller than the estimated values. 
Such large differences are typically caused by incorrect unit 
reporting (i.e. percent vs ppm).

Spatial maps
Based on an assessment of all harmonized WAMEX 
surface and drillhole datasets, Figure 10 shows the spatial 
distribution of samples in Western Australia that have 
potentially spurious reported data (i.e. they display large 
errors in at least one reported analyte). The spurious values 
for gold (46% of all spurious data) and chlorine (very few 
samples) are not shown in Figure 10 due to lower estimation 
confidence for these analytes.

Figure 11 shows the location of potentially spurious samples 
in cobalt in the test drillhole reverse circulation data (i.e. by 
plotting the spatial distribution of the two clusters in Fig. 9).

Figures 12 to 15 show several representative examples of 
spatial maps (for Ni, Li and Ag for both the training and test 
subsets) that compare the locations of surface and drillhole 
samples with high predicted values vs known occurrences of 

high-content samples. Such maps are valuable to explorers 
because they provide a gap analysis for these targeted 
elements, possibly indicating areas of higher exploration 
potential. For each example shown, we chose a minimum 
analytical threshold denoted as T. Samples with analyte 
values below T are not included. Analyte values above 
T are shown in yellow, orange or red depending on their 
concentration (the exact limits documented in each figure 
caption).

Figures 12 and 13 show the locations of harmonized 
WAMEX surface soil samples with estimated high nickel and 
lithium values, respectively, and compare them to samples 
with high known values of these analytes. Both these metals 
show good accuracy in their test data. Nickel is shown using 
a T of 500 ppm (Fig. 12), whereas for lithium T was 50 ppm 
(Fig. 13).

In Figure 14, we compare the locations of harmonized 
WAMEX diamond drillhole samples with higher estimated 
and reported nickel values. A threshold of 3000 ppm was 
used for nickel.

In Figure 15, we compare the locations of diamond drillhole 
samples with estimated high silver concentration with the 
samples with reported high silver concentration. The T for 
Ag was 5 ppm.
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Figure 10. 	 All potentially spurious WAMEX samples (excluding Au and Cl) 
are shown on GeoVIEW’s tectonic units map. Yellow symbols 
denote samples with SMAPE between 100% and 150%. Orange 
symbols indicate samples in the 150–175% range, while red 
symbols denote samples with SMAPE of 175–200%
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Figure 11. 	 Drillhole reverse circulation WAMEX samples with suspicious 
cobalt values shown on GeoVIEW’s tectonic units map. Triangles 
and stars denote, respectively, the values that seem to be too 
low or too high compared to the estimated cobalt content. 
An inset map is provided of a small area along the Western 
Australia–Northern Territory border to highlight the issue of 
overlapping data when viewed at a large scale
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Figure 12. 	 A gap analysis method for identifying prospective areas for nickel 
exploration: a) WAMEX surface soil samples with estimated high Ni 
content; b) samples with known high Ni content. Both training and 
test subsets are shown. Yellow, orange and red symbols denote 
samples with Ni concentration of 500–2000 ppm, 2000–5000 ppm 
and above 5000 ppm, respectively
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Figure 13. 	 A gap analysis for lithium: a) WAMEX surface soil samples with 
estimated high Li content; b) surface samples with known high 
Li content. Both training and test subsets are shown. Yellow, 
orange and red symbols denote samples with Li concentration of 
50–250 ppm, 250–1000 ppm and above 1000 ppm, respectively

Figure 14. 	 Nickel prospectivity interpreted from diamond drillhole (DD) data: 
a) WAMEX diamond drillhole samples with estimated high Ni 
content; b) samples with known high Ni values. Both training and 
test subsets are shown. Yellow, orange and red symbols denote 
samples with Ni concentration of 3000–10 000 ppm, 10 000–25 000 
ppm and above 25 000 ppm, respectively
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Figure 15. 	 Prospective areas for silver: a) WAMEX diamond drillhole samples with estimated high Ag content; b) samples with known high Ag values. 
Both training and test subsets are shown. Yellow, orange and red symbols denote samples with Ag concentration of 5–50 ppm, 50–500 ppm 
and above 500 ppm, respectively
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Discussion
We applied a set of DL methods to the harmonized surface 
and drillhole WAMEX datasets to identify (and replace) 
potential spurious data and estimate missing analyte values 
where possible. The method was entirely data-driven and, 
after the corresponding networks were trained, allowed 
the results to be obtained instantly. In estimating missing 
values, we considered each of the analytes in each of the 
WAMEX datasets separately. The exact configuration of the 
networks was determined by the optimal validation set error 
for each scenario. Predicting missing data in a dataset only 
using data from that dataset was found to be more accurate 
compared to using data from several datasets.

Figure 16 shows two examples of word clouds for the 
analytes that were found to have the lowest or highest 
predictability from known elements across all datasets. Gold 
(in large red text in Fig. 16a) is poorly correlated with other 
elements and is thus difficult to estimate reliably. Silver, 
arsenic and mercury (in orange) have significant prediction 
errors; however, their order of magnitude is usually predicted 
correctly. Chlorine is classified as having a low predictability 
mainly due to the low number of samples. An interesting 
observation is the absence of platinum, which, despite 
having a low predictability, was not one of the 10 analytes 
with the lowest predictability in the five individual datasets 
(drillhole data was considered as a single dataset in this 

comparison). A possible reason is the moderately strong 
correlations of platinum with palladium. The rest of the 
elements that have low predictability (in green-blue colours) 
can be estimated without multiple significant errors if the 
training data is of high quality.

The list of the most reliably predicted elements shown 
in Figure 16b almost exclusively consists of REE, which 
is explained by strong correlations within this group. To 
decrease the influence of these REE, Figure 17 shows a word 
cloud of the list of elements with the highest predictability, 
excluding the 17 REE. Under these new constraints, Ga, Hf 
and Si have the highest predictability. Although Rh, Ir and 
Os feature in this list, they may have lower predictability 
compared to the other listed elements in Figure 17 because 
Rh, Ir and Os are rarely analysed in the WAMEX datasets.

The main limitation for estimating missing data is the quality 
of the training datasets. An investigation of representative 
spurious data demonstrated that common causes were 
harmonization errors and poor accuracy of the input (true) 
data; for example, pXRF data with poor accuracy were used 
in training together with data obtained by more accurate 
laboratory methods. For large databases such as WAMEX, 
cleaning of the data should be performed as a reiterative 
process in which obvious spurious data are identified, 
removed from training, and then the networks retrained.
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a)

b)

Figure 16. 	 Analytes in the harmonized WAMEX data: a) most difficult 
to predict; and b) easy to predict. The top 10 elements for 
each dataset are presented. The size and colour of the 
analyte represents the frequency of its occurrence in the top 
10 (for example, gold and neodymium scored 5 out of 5).  
In a), red indicates low predictability and blue represents 
higher predictability
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Figure 17. 	 Most reliably predicted analytes in the harmonized WAMEX 
data excluding the REE. Top 10 elements for each dataset are 
presented. The size and colour of the analyte represents the 
frequency of its occurrence in the top 10. Ir, Os and Rh have 
low support compared to other elements and are intentionally 
grey

The results of experiments in this project show that DL 
methods deliver good results at modest computational 
cost and, contrary to many other statistical methods, 
require no manual feature engineering. The results also 
demonstrate the efficacy of the method for the different 
types of geochemical data included in the WAMEX database 
(i.e. surface vs drillhole sample media, and differences 
between laboratory analytical methods). The DNN-based 
estimation approach may be particularly useful when 
applied to geographical regions in Western Australia where 
geochemical datasets are incomplete and access to new 
samples, or reanalysis of existing samples, is inhibited by 
time, physical access and cost constraints. The predicted 
values for analytes in this DL version of WAMEX data 
may benefit mineral explorers by indicating new regions 
of exploration interest, or simply by highlighting gaps in 
collected data — the latter informing future data collection 
strategies that reduce levels of uncertainty and exploration 
risk.

Future outlook
The current project is the first step towards a DL-based 
system for geochemical data quality assurance and 
quality control (QA/QC). Such tools are needed because 
manual spurious data detection requires too much time 
and human resources. This three-month project explored 
the feasibility of the proposed approach in spurious data 
detection and missing values estimation in large-scale 
WAMEX geochemical data, and found it to be a viable 
method. A tangible outcome of this project was a list of 
samples with probable spurious geochemical values. 
Subsequent validation of this sample list by GSWA has led 
to the identification of reporting errors, such as incorrect 
allocation of unit values, in the reported data. Although this 
manual correction to the WAMEX geochemical data has 
been applied in some cases, we acknowledge that complete 
and thorough data validation may be time-consuming. Based 
on the obtained results, we briefly outline possible directions 
for future work.

1.	 Quality control of database inputs. The fast prediction 
capabilities of DNN allow for rapid quality checking of 
new geochemical data from commercial laboratories. 
This quality check could be applied as new data are 
generated from analysed samples, or could be performed 
retrospectively and applied to all existing data stored by a 
company. The cleaned WAMEX geochemical data could 
be used as the premier training set with different sample 
types selected so that they match the end user’s sample 
types. This quality check could also be applied to all 
industry-generated geochemical data that are routinely 
reported and integrated into the WAMEX database. 
This automated system would allow DMIRS to more 
easily issue rapid feedback to companies and request 
corrected data. 
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2.	 Assessment of confidence in missing data estimation 
and uncertainty quantification. The quality of missing 
data prediction is highly dependent on the quality and 
information content of each individual sample. DNN 
is a black-box model with decisions sometimes hard 
to interpret. Therefore, development of a tool that 
allows quality assessment of our estimations of the 
missing values for each individual sample will be of 
great practical use. This is also true for estimating 
the confidence in the DNN identification of spurious 
data. Improvements in quality from retraining on an 
improved harmonized dataset will allow for a better 
understanding on the causes of quality issues (e.g. 
training data, inherent process issues, or physical/
chemical constraints). Data estimation quality can be 
further assessed for a specific geological province/
mineralization type.

3.	 More specialized DL-based tools for spurious data 
detection. Currently, we use the fully connected DNN 
that was developed primarily for the missing data 
estimation. There are significant potential advantages in 
exploring novel DL methods developed for spurious data 
detection, which may lead to improved accuracy and, 
similar to the previous point, an increase in confidence 
in the results. Some research has been done in this 
direction in other fields (Chalapathy and Chawla, 2019); 
however, not in the geochemical data context.

4.	 Rock type classification from geochemistry. Rock 
type classification tasks can be efficiently handled with 
a similar DNN-based approach. Based on our previous 
experience with the WACHEM database (Puzyrev et al., 
2023), such DL estimation of the rock type of a sample 
from its geochemistry shows good prediction accuracy 
for the entire database. In some cases, the classification 
accuracy exceeds 90% for 10 rock classes (e.g. the Sir 
Samuel–Leonora–Menzies study area with its abundant 
regolith samples that have a more precise prediction 
compared to other possible rock type categories; 
Puzyrev et al., 2023). This can be useful for validating 
existing datasets or predicting rock types directly from 
geochemical data.

5.	 Spatial assessment of missing data estimations. 
Comparison of mineralization trends derived from the 
existing harmonized WAMEX datasets (Ormsby et al., 
2021) with those from the DL missing data prediction 
could provide insights into the applicability of this 
approach for targeted exploration.

Conclusions
The WAMEX database is known to contain a significant 
amount of spurious data, including errors in unit reporting 
and incorrect assignment of analytes. In this study, a set 
of DL methods was applied to the harmonized surface and 
drillhole WAMEX datasets to identify (and replace) potential 
spurious data and estimate missing analyte values where 
possible. The method is entirely data-driven and, after the 
training phase is complete, allows the results to be obtained 
instantly. The results demonstrate the efficacy of the method 
in detecting potential spurious entries and estimating 
missing analyte values for the different types of geochemical 
samples included in the WAMEX database.
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Appendix 1. 

Error codes
The following WAMEX entries were treated as unconventional error codes and replaced with Not a Number (NaN) value.

Conventional codes:
–9999, –6666.

Non–conventional codes (found in surface datasets):

–999, –99999, –9999000, –9990000, –99990000, –999000, –99000, –99900, –990000, –9989990, –9005000, –9000000, 
–99990000000, –99999000, –9960000, –9970000, –9009, –999.9, –99.99, –5555, –4444, –7777, –5559, –5559000, 
–5555000, –55550000, –5557, –5557000, –5666, –5666000, –5.556, –55590000, –5556, –5556000, –5.5550003, –4440000, 
–4444000, –7777000, –10000000, –100000000, –20000000, –666, –66660000, –6666000, –6660000, –666000, –3333, 
–3333000, –33300000, –33330000, –33330000000, –60000000, –1e32, –50000000000, –9910000, –55570000, –55560000, 
–5560000, –555, –555000, –99000000, –990000000, –8880000, –888000, –888, –8888, 20000000, 40000000.
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Field name Ratio Field name Ratio

Fe2O3T_pct 7776.0 BaO_ppm 0.89566

Fe_ppm 1286.0 Ce_ppm 1.2284

Al_ppm 0.000188946265571534 CeO2_ppm 0.814089

Al2O3_pct 5292.51 Cr_ppm 1.46155667478318

Ca_ppm 0.000139918651296136 Cr2O3_ppm 0.684202

CaO_pct 7147.01 Cs_ppm 1.0602

K_ppm 0.000120460593123868 Cs2O_ppm 0.943226

K2O_pct 8301.47 Dy_ppm 1.1477

Mg_ppm 0.000165827579116338 Dy2O3_ppm 0.871318

MgO_pct 6030.36 Er_ppm 1.1435

Mn_ppm 0.000129122727278597 Er2O3_ppm 0.87452

MnO_pct 7744.57 Eu_ppm 1.1579

Na_ppm 0.000134796867859978 Eu2O3_ppm 0.86361

Na2O_pct 7418.57 Ga_ppm 1.3442

P_ppm 0.000229136544758387 Ga2O3_ppm 0.743925

P2O5_pct 4364.21 Gd_ppm 1.1526

Si_ppm 0.000213931657392729 Gd2O3_ppm 0.867591

SiO2_pct 4674.39 Ho_ppm 1.1455

Ti_ppm 0.00016680344549197 Ho2O3_ppm 0.872973

TiO2_pct 5995.08 La_ppm 1.1728

Ba_ppm 1.11649509858652 La2O3_ppm 0.85268

Li_ppm 2.1527 Tb_ppm 1.151

Li2O_ppm 0.46457 Tb2O3_ppm 0.868803

Lu_ppm 1.1371 Th_ppm 1.1379

Lu2O3_ppm 0.879383 ThO2_ppm 0.878809

Nb_ppm 1.4305 Tm_ppm 1.1421

Nb2O5_ppm 0.699044 Tm2O3_ppm 0.875609

Nd_ppm 1.1664 U_ppm 1.17924250178655

Nd2O3_ppm 0.857351 U3O8_ppm 0.848002

Pr_ppm 1.1703 V_ppm 1.78518510584362

Pr2O3_ppm 0.854469 V2O5_ppm 0.560166

Rb_ppm 1.0936 W_ppm 1.261

Rb2O_ppm 0.914412 WO3_ppm 0.793

Sb_ppm 1.3284 Y_ppm 1.2699

Sb2O5_ppm 0.83534 Y2O3_ppm 0.78744

Sm_ppm 1.1596 Yb_ppm 1.1387

Sm2O3_ppm 0.86239 Yb2O3_ppm 0.878201

S_pct 2.49713453811751 Zn_ppm 1.2448

SO3_pct 0.400459 ZnO_ppm 0.803397

Sr_ppm 1.18259923485829 Zr_ppm 1.350787306381520

Ta_ppm 1.2211 ZrO2_ppm 0.740309

Ta2O5_ppm 0.818967

Appendix 2. 

Oxide conversion factors 
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WACHEM ALS ActLabs Final limit Unit (if not 
ppm)

Element Method Unit Limit Method Unit Limit Method Unit Limit

Ag ME-MS61 ppm 0.01 AuME-ST43 ppm 0.001 0.001

Al2O3 ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Al AuME-ST43 % 0.01 10

As ME-MS42 ppm 0.1 ME-MS23 ppm 0.0005 0.0005

Au PGM-ICP24 ppm 0.001 Au-CN43 ppm 0.00002 0.00002

B AuME-ST43 ppm 2 Ultratrace 1 ppm 1 1

Ba ME-MS81 ppm 0.5 ME-MS23 ppm 0.01 0.01

Be ME-MS23 ppm 0.002 0.002

BaO ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Bi ME-MS42 ppm 0.01 ME-MS23 ppm 0.0003 0.0003

Br ME-HAL01 ppm 0.02 0.02

C C-IR07 % 0.01 ME-IR08 % 0.01 100

CaO ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Ca AuME-ST43 % 0.01 5

Cd ME-MS61 ppm 0.02 ME-MS23 ppm 0.0002 0.0002

Ce ME-MS81 ppm 0.1 ME-MS23 ppm 0.0001 0.0001

Cl ME-HAL01 ppm 0.1 0.1

Co ME-MS61 ppm 0.1 ME-MS23 ppm 0.0003 0.0003

Cr ME-MS81 ppm 10 ME-MS23 ppm 0.001 0.001

Cr2O3 ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Cs ME-MS81 ppm 0.01 ME-MS23 ppm 0.0001 0.0001

Cu ME-MS61 ppm 0.2 ME-MS23 ppm 0.001 0.001

Dy ME-MS81 ppm 0.05 ME-MS23 ppm 0.0001 0.0001

Er ME-MS81 ppm 0.03 ME-MS23 ppm 0.0001 0.0001

Eu ME-MS81 ppm 0.03 ME-MS23 ppm 0.0001 0.0001

F ME-HAL01 ppm 0.05 0.05

Fe2O3T ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Fe ME-MS23 % 0.00001 0.1

Ga ME-MS81 ppm 0.1 ME-MS23 ppm 0.0005 0.0005

Ge ME-MS23 ppm 0.0001 0.0001

Gd ME-MS81 ppm 0.05 ME-MS23 ppm 0.0001 0.0001

Hf ME-MS81 ppm 0.2 ME-MS23 ppm 0.00005 0.00005

Hg ME-MS42 ppm 0.005 ME-MS23 ppm 0.0001 0.0001

Ho ME-MS81 ppm 0.01 ME-MS23 ppm 0.0001 0.0001

I ME-HAL01 ppm 0.002 0.002

In ME-MS42 ppm 0.005 ME-MS23 ppm 0.0001 0.0001

Ir PGM-MS25NS ppm 0.001 1B1 ppm 0.0001 0.1 ppb

K2O ME-XRF26 % 0.01 ME_XRF26 % 0.01 0.01 %

K AuME-ST43 % 0.01 5

La ME-MS81 ppm 0.1 ME-MS23 ppm 0.0001 0.0001

Li ME-MS61 ppm 0.2 ME-MS23 ppm 0.0002 0.0002

LOI ME-GRA05 % 0.01 OA-GRA05 % 0.01 0.01 %

Lu ME-MS81 ppm 0.01 ME-MS23 ppm 0.0001 0.0001

MgO ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Mg ME-MS23 % 0.000001 0.01

MnO ME-XRF26 % 0.01 ME_XRF26 % 0.01 WRA-ICP-4B % 0.001 10

Appendix 3. 

Analyte detection limits
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WACHEM ALS ActLabs Final limit Unit (if not 
ppm)

Element Method Unit Limit Method Unit Limit Method Unit Limit

Mn ME-MS23 ppm 0.01 0.01

Mo ME-MS61 ppm 0.05 ME-MS23 ppm 0.0005 0.0005

Na2O ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Na AuME-ST43 % 0.001 2

Nb ME-MS81 ppm 0.2 ME-MS23 ppm 0.0001 0.0001

Nd ME-MS81 ppm 0.1 ME-MS23 ppm 0.0001 0.0001

Ni ME-MS61 ppm 0.2 ME-MS23 ppm 0.001 0.001

Os PGM-MS25NS ppm 0.002 2 ppb

P2O5 ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

P AuME-ST43 % 0.0005 5

Pb ME-MS61 ppm 0.5 ME-MS23 ppm 0.0001 0.0001

Pd PGM-ICP24 ppm 0.001 ME-MS23 ppm 0.00005 0.05 ppb

Pr ME-MS81 ppm 0.03 ME-MS23 ppm 0.0001 0.0001

Pt PGM-ICP24 ppm 0.001 PGM-MS23L ppm 0.0001 0.1 ppb

Rb ME-MS81 ppm 0.2 ME-MS23 ppm 0.0001 0.0001

Re ME-MS42 ppm 0.001 ME-MS23 ppm 0.00001 0.00001

Rh Rh-MS25 ppm 0.001 1B1 ppm 0.0002 0.2 ppb

Ru PGM-MS25NS ppm 0.003 3 ppb

S S-IR08 % 0.01 AuME-ST43 % 0.002 0.002 %

Sb ME-MS42 ppm 0.05 ME-MS23 ppm 0.00005 0.00005

Sc ME-MS61 ppm 0.1 ME-MS23 ppm 0.001 0.001

Sc-2 ME-MS42 ppm 0.1

Se ME-MS42 ppm 0.2 AuME-ST43 ppm 0.002 0.002

SiO2 ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Si 10

Sm ME-MS81 ppm 0.03 ME-MS23 ppm 0.0001 0.0001

Sn ME-MS81 ppm 1 ME-MS23 ppm 0.0002 0.0002

SO3 ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Sr ME-MS81 ppm 0.1 ME-MS23 ppm 0.001 0.001

SrO ME-XRF26 % 0.01 ME_XRF26 % 0.01 100

Ta ME-MS81 ppm 0.1 ME-MS23 ppm 0.00005 0.00005

Tb ME-MS81 ppm 0.01 ME-MS23 ppm 0.0001 0.0001

Te ME-MS42 ppm 0.01 ME-MS23 ppm 0.0005 0.0005

Th ME-MS81 ppm 0.05 ME-MS23 ppm 0.00002 0.00002

TiO2 ME-XRF26 % 0.01 ME_XRF26 % 0.01 WRA-ICP-4B % 0.001 10

Ti ME-MS23 % 0.0000005 0.005

Tl ME-MS42 ppm 0.02 ME-MS23 ppm 0.00005 0.00005

Tm ME-MS81 ppm 0.01 ME-MS23 ppm 0.0001 0.0001

U ME-MS81 ppm 0.05 ME-MS23 ppm 0.00005 0.00005

V ME-MS81 ppm 5 ME-MS23 ppm 0.0002 0.0002

W ME-MS81 ppm 1 ME-MS23 ppm 0.0001 0.0001

Y ME-MS81 ppm 0.1 ME-MS23 ppm 0.0001 0.0001

Yb ME-MS81 ppm 0.03 ME-MS23 ppm 0.0001 0.0001

Zn ME-MS61 ppm 2 ME-MS23 ppm 0.01 0.01

Zr ME-MS81 ppm 2 ME-MS23 ppm 0.0001 0.0001
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The Western Australian Mineral Exploration (WAMEX) database contains  
geochemical data provided to the Geological Survey of Western Australia  
(GSWA) in digital format by the exploration and mining industry.  
The WAMEX database is known to contain a significant amount  
of spurious data, including errors in unit reporting and incorrect  
assignment of analytes brought about mainly by errors in  
post-analysis data reporting and, in some cases,  
due to low accuracy of the analytical technique.  
There are significant time and cost challenges  
in manually identifying and correcting these  
issues.

In this study, a set of deep-learning methods  
was applied to the harmonized surface and  
drillhole WAMEX datasets to identify (and  
replace) potential spurious data and estimate  
missing analyte values wherever possible. The  
method was entirely data-driven and, after the  
corresponding networks have been trained, allows  
the results to be obtained instantly. Deep-learning 
methods delivered good results at modest 
computational cost and, contrary to many other 
statistical methods, required no manual feature engineering. The results of this study 
demonstrate the efficacy of the method for the different types of geochemical data 
included in the WAMEX database (i.e. surface vs drillhole sample media, and different 
laboratory analytical methods).
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