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Geology of the Yardilla 1:100 000 sheet

by

S. A. Jones

Abstract
The YARDILLA 1:100 000 sheet is in the southeastern part of the Eastern Goldfi elds area, on the margin 
of the Yilgarn Craton, and includes part of the Albany–Fraser Orogen. Most of the map area comprises 
Archaean metasedimentary, metavolcanic, and intrusive rocks. Proterozoic granulite- to amphibolite-facies 
gneisses form the Fraser Range in the southeast corner, and the Proterozoic Woodline Formation overlies 
the Archaean rocks in an east-northeasterly trending belt in the northwest. Flat-lying Cainozoic Eundynie 
Group sedimentary rocks overlie the Archaean basement in the northern half.

Structural trends on YARDILLA differ markedly from the regional structural grain of the Eastern 
Goldfi elds Granite–Greenstone Terrane, and refl ect the effects of the Mesoproterozoic Albany–Fraser 
Orogen. Five deformation events are recognized in the Archaean rocks:
• D1 recumbent folding;
• open to tight upright folding from east-northeast−west-southwest crustal shortening during the D2 

event, accompanied by peak M2 metamorphic conditions at lower–middle greenschist to amphibolite 
facies;

• regional-scale D3–D4 faults (recognized only on aeromagnetic images);
• D5 Albany–Fraser related deformation. This event is subdivided into D5a open northeast-plunging folds 

and warps; D5b clockwise rotation of D1 to D5a structures, from the regional north-northwest trend to 
a dominantly northeast trend; development of a late overprinting steep northeast-oriented cleavage 
during D5c; and late crosscutting D5d brittle structures.

An increase in metamorphic grade in the Archaean rocks is initially seen as an increase in mica grain 
size and the degree of schistocity, followed by the appearance of garnet close to the craton margin. This 
garnet isograd is near-parallel to the Yilgarn Craton – Albany–Fraser Orogen contact.

Three deformation stages (DF1 to DF3) were also recognized in the Proterozoic rocks of the Fraser 
Range, refl ecting the complex history of the Albany–Fraser Orogen. These stages include the well-
developed, northeast-striking, steeply dipping DF1 gneissic banding, with a shallow to moderate northeast-
plunging lineation and dextral shear-sense indicators, steep DF2 shear bands with steep fi ne lineations, and 
subvertical northwest-striking strike-slip faults.

The only commodity produced on YARDILLA is dimension stone from the Fraser Range gneisses. The 
area has been explored for gold, base metals, uranium, diamond, and lignite.

KEYWORDS: Yardilla, Yilgarn Craton, regional geology, deformation, Albany–Fraser Orogen,
 structural geology, dimension stone. 
1

Introduction
The YARDILLA* 1:100 000-scale map sheet (SG 51-14, 
3434; Jones and Ross, 2005) is in the southeastern part of 
the WIDGIEMOOLTHA 1:250 000-scale map sheet, bound by 
longitudes 122°30' and 123°00'E, and latitudes 31°30' and 
32°00'S (Fig. 1). The northern part of YARDILLA lies in the 
Kurnalpi District of the North East Coolgardie Mineral 
Field and the southern part is in the Dundas Mineral 

* Capitalized names refer to standard 1:100 000-scale map sheets, 
unless otherwise indicated.
Field. YARDILLA is about 100 km south-southeast of 
Kalgoorlie–Boulder, with the Great Victoria Desert to the 
east and the Nullarbor Plain to the southeast. The Fraser 
Range cuts across the southeastern corner of YARDILLA, 
and the map is named after Yardilla Bore on Fraser Range 
Station (Fig. 2).

Access
The southern margin of YARDILLA (Fig. 1) is 8–10 km north 
of the Eyre Highway, about 100 km east of Norseman and 
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Widgiemooltha, and 100 km west of Balladonia. Fraser 
Range Station is the sole pastoral lease on YARDILLA, 
but the homestead is just south of the map sheet. The 
majority of land on YARDILLA is classifi ed as vacant Crown 
Land.

Access to YARDILLA is limited because the area is 
covered by very dense scrub with only a few exploration 
tracks, and some station tracks in the southeast corner 
(Fig. 2). The main access to the sheet is via a central 
northeasterly track off the Eyre Highway. This track can 
also be reached from the Trans Access Road (Fig. 1), 
about 50 km north of YARDILLA, which runs parallel to the 
east–west Trans Australia Railway and provides alternate 
access from Kalgoorlie. YARDILLA can also be reached 
from Widgiemooltha via a series of minor tracks, south of 
the Bald Hill tantalum mine.

Climate, physiography, and 
vegetation
The climate of YARDILLA is semi-arid, with the closest 
weather stations at Norseman and Rawlinna recording 
annual rainfall averages of 289 and 198 mm respectively. 
The highest rainfall is typically during the winter 
months, with sporadic rainfall in summer from isolated 
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thunderstorms and decayed tropical cyclones. Streams are 
typically ephemeral, although some swamps and gnamma 
holes retain water through all but the driest months. 
Temperatures in the summer months commonly exceed 
35° to 40°C, and during winter, minimum temperatures 
commonly drop below 5°C with occasional frosts (climate 
data from the Commonwealth Bureau of Meteorology 
website <http://www.bom.gov.au>).

YARDILLA is dominated by large areas of irregular 
terrain consisting of isolated low ridges and broad 
sheetwash plains. Deep weathering and thick colluvial 
cover, particularly in the south, obscures much of the 
bedrock. Although bedrock exposure is poor, bedrock 
structural trends are visible on aerial photos and satellite 
imagery, suggesting that the regolith cover is relatively 
thin in places. In the central part, drainage is typically to 
the northeast into a playa lake system that dominates the 
northeastern corner of YARDILLA. The terrain west of this 
lake system is typically more irregular, with scarps, broad 
ridges, and greater bedrock exposure. In contrast, the 
southeastern corner is dominated by broad elongate ridges 
of Proterozoic gneisses forming the Fraser Range. The 
Proterozoic Woodline Formation also forms large isolated 
rock-covered ridges on northwestern YARDILLA. Relief is 
typically low across the map sheet area, with the highest 
point (527 m above Australian Height Datum; AHD) in the 
Fraser Range and the lowest point (266 m above AHD) in 
the playa lake system in the northeast.

YARDILLA lies in the Eremaean Botanical Province of 
Diels (1906), and occupies part of the southwest Botanical 
Province and the southwest interzone of the Eremaean 
Province of Beard (1975, 1985, 1990). The broad low 
ridges and sheetwash plains that dominate YARDILLA are 
mainly covered by mixed eucalypt woodland including 
Eucalyptus salmonophloia, blackbutt (E. lesouefii, 
E. dundasii), patches of giant mallee (E. oleosa), and 
merrit (E. fl ocktoniae). The eucalypts are intermingled 
with tall shrubs dominated by broombush (Eremophila 
scoparia), greybush (Cratystylis concephala), bluebush 
(Maireana sedifolia), and saltbush (Atriplex vesicaria), 
with a patchy ground layer of grasses and ephemeral herbs 
(Beard, 1975, 1990). Large open areas are interspersed 
with the thick mixed bushland and consist of widely spaced 
salmon gums and gimlet, with an understorey of bluebush 
and grasses. Wattle, mulga (Acacia spp.), and broombush 
are common on granite-derived soils, particularly in 
the west, whereas blackbutt species prefer soils derived 
from mafi c rocks. Vegetation in and around the playa 
lake system is dominated by samphire (Halosarcia spp.), 
saltbush, bluebush, and greybush (Beard, 1975, 1990). 
Large patches of spinifex are common on granite, felsic 
volcanic rocks, and gneissic outcrops in the Fraser Range. 
The soils are highly calcareous in the southern part of 
YARDILLA, becoming slightly less calcareous to the north 
and west (Northcote et al., 1968). Many outcrops are 
covered with sandy soil, particularly around granite and 
Fraser Range gneisses.

Previous investigations
Sofoulis et al. (1965) recorded the geology of YARDILLA in 
the fi rst edition 1:250 000-scale map of WIDGIEMOOLTHA 
and in the accompanying Explanatory Notes (Sofoulis, 
1966). The geology of YARDILLA was revised by Griffi n 
and Hickman (1988) in the second edition 1:250 000-scale 
map of WIDGIEMOOLTHA and the accompanying Explanatory 
Notes (Griffin, 1989). Broad tectonic models of the 
Eastern Goldfi elds area have included parts of YARDILLA 
(e.g. Swager, 1995, 1997; Krapez et al., 1997). YARDILLA 
was included in a regolith geochemistry study of the Fraser 
Range region (Morris et al., 2000), and in a gravity survey 
by Shevchenko (2000). 

Proterozoic rocks of the Fraser Range and Woodline 
Formation have been included in many regional studies 
of the Albany–Fraser Orogen (e.g. Myers, 1990; 
Duebendorfer, 2002; Nelson et al., 1995; Clark et al., 
1999, 2000). Tyrwhitt and Orridge (1975) examined the 
mineral prospectivity of the Fraser Range.

Open-file reports, maps, and data for mining and 
exploration tenements submitted to the Department of 
Industry and Resources (DoIR) are held in the Western 
Australian mineral exploration (WAMEX) system at 
the DoIR library in Perth and at the Geological Survey 
of Western Australia’s (GSWA’s) Kalgoorlie regional 
offi ce. WAMEX reports are also progressively becoming 
available online on the DoIR website (<http://www.doir.
wa.gov.au>).

Current work
Mapping on YARDILLA was carried out as part of a new 
mapping initiative of GSWA to complete the mapping 
of the eastern margins of the Yilgarn Craton. These areas 
contain abundant greenstones, but are poorly understood 
and therefore underexplored. Data from YARDILLA will 
be added to the East Yilgarn 1:100 000 Geological 
Information Series — a seamless compilation of 57 
map sheets at 1:100 000 scale (Groenewald et al., 2000; 
Groenewald and Riganti, 2004).

Fieldwork for YARDILLA was carried out between 
April and November 2002. Mapping was based on colour 
1:25 000-scale aerial photos flown in January 2002. 
Aeromagnetic data with a line spacing of 200 m, fl own by 
Fugro Airborne Surveys in 2001, were used for geological 
interpretation. Landsat Thematic Mapper (TM) false 
colour imagery (using ratios of bands 2, 3, 4, 5, and 7) 
assisted the interpretation of regolith unit distribution.

Nomenclature
Although Archaean rocks on YARDILLA have been affected 
by variable grades of metamorphism, where primary 
textures are adequately preserved to allow identifi cation 
of a protolith, the prefi x ‘meta’ is not used for ease of 
description. Metamorphic terminology is applied to rocks 
in which primary mineralogy cannot be identifi ed.

Regional geology
YARDILLA lies on the southeastern margin of the Eastern 
Goldfi elds Granite–Greenstone Terrane, at the contact 
with the Proterozoic Albany–Fraser Orogen (Tyler and 
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Hocking, 2001, 2002). The Eastern Goldfi elds Granite–
Greenstone Terrane is characterized by a pronounced 
north-northwest structural fabric, defi ned by a network of 
anastomosing major faults and linear to arcuate greenstone 
belts separated by large elongate granitic bodies (Fig. 1). 
The Eastern Goldfi elds Granite–Greenstone Terrane has 
been subdivided into a number of terranes, based on 
differing lithostratigraphic packages, that are separated 
by major tectonic features, although there is no consensus 
on precise terrane boundary locations (e.g. Myers, 
1990, 1997; Swager, 1995, 1997; Swager et al., 1997; 
Groenewald et al., 2002). 

YARDILLA lies in the Kurnalpi terrane of Myers 
(1997), which is between the Emu–Randall and Claypan 
Faults (Fig. 1). Swager (1995), and Brown et al. (2001) 
suggested that the Kurnalpi terrane, and other terranes 
east of the Keith–Kilkenny Fault (e.g. the Edjudina, 
Linden, and Laverton terranes) can be separated from 
the Kalgoorlie terrane using lithostratigraphy and 
sensitive high-resolution ion microprobe (SHRIMP) 
U–Pb zircon ages. These studies highlighted the presence 
of banded iron-formation (BIF) and the small volumes 
of komatiite in the Kurnalpi terrane compared to the 
Kalgoorlie terrane. SHRIMP U–Pb zircon data (Nelson, 
1997; Swager et al., 1997) suggest that the andesitic–
dacitic volcanism in the Kurnalpi terrane occurred at 
2720–2705 Ma, slightly earlier than in the Kalgoorlie 
terrane. However, Nelson (1995) and Groenewald et al. 
(2002) dated a felsic volcanic unit that lies between two 
komatiite layers at 2706 ± 3 Ma, and a volcaniclastic unit 
overlying this succession at 2673 ± 7 Ma, demonstrating 
contemporaneity with similar units in the Kalgoorlie 
terrane. The stratigraphy of the Kurnalpi area remains 
poorly understood and further work is necessary to 
constrain the characteristics of the terranes. 

The regional stratigraphy of the Kurnalpi terrane can 
be broadly divided into a basal basaltic unit with upper 
marker units of komatiite, overlain by a highly variable 
sequence of mafi c and felsic volcanic and volcaniclastic 
rocks. In places, the basal basaltic unit grades laterally 
into felsic epiclastic-dominated packages, which Swager 
(1995) interpreted as an original depositional feature. 
The upper sequence of mafi c and felsic volcanic rocks 
is separated by a major shear zone into a lower felsic 
fragmental unit with an age of 2708 ± 7 Ma (Nelson, 
1997) and an upper package of rocks with an age of 2684 
± 3 Ma (Nelson, 1995).

The Eastern Goldfi elds Granite–Greenstone Terrane 
was affected by four major compressional events, 
separated by periods of extension (Archibald et al., 1978; 
Archibald, 1987; Swager et al., 1997; Nelson, 1997; 
Swager, 1995, 1997; Williams, 1993; Table 1). Typically, 
the earliest deformation event (D1) involved thrusting and 
recumbent folding, followed by extended east-northeast–
west-southwest crustal shortening during D2, producing 
major regional-scale upright F2 folds (2675–2655 Ma; 
Nelson, 1997). Recent studies (Davis and Maidens, 
2003; Weinberg et al., 2003) suggest that the D2 event 
was diachronous, with episodic compression–extension 
switching attributed to the Wangkathaa Orogeny (Blewett 
et al., 2004).
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The D2 event was followed by D3 sinistral movement 
and associated folding on north-northwesterly trending 
regional strike-slip faults. Weinberg et al. (2003) suggested 
that D3 conjugate shearing waned at about 2630 Ma, 
contemporaneous with and outlasting D2. Continued 
east–west shortening during D4 resulted in northeast to 
east-northeast oblique dextral faults and northwest to west-
northwest oblique sinistral faults. A minimum age for D4 
is derived from late- to post-tectonic low-calcium granites, 
with ages ranging from 2650 to 2630 Ma (Smithies and 
Champion, 1999).

Regional metamorphic grades in the Eastern 
Goldfi elds Granite–Greenstone Terrane range from low- 
to intermediate-pressure facies, and may partly refl ect the 
distribution of granitic bodies (Witt, 1991; Ridley, 1993; 
Swager, 1997; Mikucki and Roberts, 2003). Metamorphic 
grades are typically higher (amphibolite facies) adjacent 
to the surrounding granite, whereas lower grade zones 
(greenschist facies) are observed in the central parts 
of the greenstone belts. Peak metamorphic conditions 
were typically reached during D2 deformation, probably 
contemporaneous with the bulk of granitic emplacement 
at 2660 to 2640 Ma (Witt, 1991; Nelson, 1997; Swager, 
et al., 1997).

Much of the Yilgarn Craton has been stable since the 
Archaean with only minor deformation recorded during 
the Proterozoic and Phanerozoic. At about 2420 Ma,
east-northeasterly trending mafic dykes of the 
Widgiemooltha Dyke Suite intruded the region 
(‘Widgiemooltha dyke swarm’ of Nemchin and 
Pidgeon, 1998). Deposition of the Proterozoic Woodline 
Formation is thought to have occurred at 1620 ± 
100 Ma (Turek, 1966) and deformation of this sequence 
is attributed to the Albany–Fraser Orogen, which 
records the continent–continent collision of the Yilgarn 
Craton margin and east Antarctica between 1300 and 
1100  Ma (Myers, 1990, 1995a). Myers (1990) and 
Tyler and Hocking (2001) divided this orogen into 
the Northern Foreland and the Biranup and Nornalup 
Complexes, based on rock types (Myers, 1990). During 
the collision, high-grade quartzofeldspathic gneisses
and layered mafic intrusions of the Fraser Complex
(part of the Biranup Complex) were thrust over the 
southern margin of the Yilgarn Craton. At about
1210 Ma, the northeasterly to north-northeasterly
trending Fraser dyke swarm intruded an area within 
100 km of the contact between the Yilgarn Craton and 
Albany–Fraser Orogen (Wingate et al., 2000). 

Large palaeodrainage channels formed during 
pre-Jurassic glaciation events and were fl ooded during 
the Paleocene by marine transgressions, resulting in 
widespread deposition of the largely fluviodeltaic to 
estuarine Eundynie Group (Clarke, 1994; Clarke et al., 
2003). Subsequent development of extensive laterite 
profi les resulted from prolonged deep weathering. Semi-
arid conditions throughout most of the Neogene and 
Quaternary enhanced the development of playa lakes and 
their associated dune systems in the lowlands defi ned by 
the palaeodrainage channels (Griffi n, 1989; Clarke, 1994; 
Clarke et al., 2003).
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Table 1. Geological history of the southeastern Eastern Goldfi elds Granite–Greenstone Terrane 

Age Features Timing constraints
(Ma)

............................................................................................................ De  extension  ..........................................................................................................

c. 2705 Low-angle shear on granite–greenstone contacts(a)  Felsic tuff interbedded with komatiites c. 2705 Ma(b)

 Deposition of komatiite–basalt synchronous with intrusion of
 layered mafi c to ultramafi c sills 
>?2666 Subsequent deposition of Black Flag Group; Mount Belches Youngest deposition age of Black Flag Group and 
 Formation(c); intrusion of pre-D2 granite into Mount Belches Formation(d) Mount Belches Formation(e)

.........................................................................................  D1 N–S compression (?diachronous)  .......................................................................................

2683 – N–S-directed thrusting and local recumbent folding (d,f,g)
  Felsic volcanic rocks 2681 ± 5 Ma, 2675 ± 3 Ma(h) 

<?2672 M1 associated with development of layer-parallel foliation maximum age; 2674 ± 6 Ma post-D1 felsic porphyry dyke(i) 
  between Kalgoorlie and Democrat 

............................................................................................... Post-D1 and pre-D2  extension  ............................................................................................

<2672 –   Follows D1 with roll-over anticlines and E–W extension Post-D1 and pre-D2 felsic porphyry 2674 ± 6 Ma(i)

>2655 leading to clastic infi ll of local synclinal basins(j) Pre-dates Kurrawang and Merougil Conglomerates
  Voluminous granitic intrusions at 2675–2657 Ma(h)

....................................................................  D2 (Wangkathaa Orogeny(k)) E–W compression (?diachronous)  ..................................................................

c. 2675 to E–W shortening with upright folds and shallow NNW-plunging  Maximum: 2675 ± 2 Ma(o) post-D1 monzogranite 
2655 fold axes(d,l,m); folding and doming of granite bodies driven  Minimum 2660 ± 3 Ma(h) post-D2 monzogranite  
 by granite buoyancy regional stresses(n) Kambalda Anticline:  syn- or late-deposition of the 
 M2 peak metamorphic conditions during D2(–?D3) Kurrawang Sequence at 2655 Ma(d)

 lower–middle greenschist to amphibolite facies

......................................................................................................... D3  transpression  .......................................................................................................

c. 2663 – Tightening of F2 folds(p,q); conjugate shearing wanes at 2630 Ma  Minimum: 2658 ± 13 Ma (Brady Well Monzogranite)
2645(j,h) Contemporaneous with and outlasting D2 Boulder–Lefroy Fault(q,d), Butchers Flat Fault(d)

.................................................................................................  De   post-orogenic collapse  ...............................................................................................

c. 2640 Post-metamorphic orogenic collapse(r) Late-tectonic granite c. 2640 Ma; Ida Fault

......................................................................................................... D4  transpression  .......................................................................................................

<?2640 W to WNW oblique sinistral faults(l,s); NE to ENE oblique 2638 ± 26 Ma(t); 2651 ± 5 Ma(u) post-tectonic alkaline
 dextral–reverse faults(l,g); low-Ca granitoid intrusion granites; Paddington area, Mount Charlotte, Black Flag 
 thoughout D2–D4

(n)  Fault

..........................................................................................................  Dyke intrusion  ........................................................................................................

c. 2640 Intrusion of Widgiemooltha Dyke Suite c. 2420(v) Widgiemooltha Dyke, Lake Cowan

..........................................................................................  Deposition of Woodline Formation  ........................................................................................

<1620 Deposition of Woodline Formation; NW to SE palaeofl ow direction 1620 ± 100 Ma(w); quartz arenite NW YARDILLA

................................................................................ D5 Albany–Fraser Orogeny-related deformation  ..............................................................................

c. 1345– Deformation of Archaean rocks (and Woodline Formation) Southeast YARDILLA

1260 related to dextral transpression probably during late Stage I
 phase(x) of the Albany–Fraser Orogeny
 M3 lower greenschist- to amphibolite-facies metamorphism of 1205 ± 10 Ma(z) random mineral growth overprinting
 Archaean and Proterozoic rocks (Woodline Formation) during the  compressive fabrics; Mount Barren Group
 Albany–Fraser Orogeny; peak thermal metamorphism post-dates 
 main collisional event (Stage I)(y)

..........................................................................................................  Dyke intrusion  ........................................................................................................

c. 1210 Intrusion of Fraser dyke swarm c. 1210 Ma(y) dolerite dyke, Kambalda

....................................................................................................  Marine transgressions  ..................................................................................................

50–38 Deposition of Eundynie Group, and Cowan and Lefroy 50–38 Ma(za); southeastern Eastern Goldfi elds
 palaeodrainage channels; (?)laterite formation 
<38 Uplift, erosion, laterite development 38 Ma – present; southeastern Eastern Goldfi elds

NOTES: (a) Passchier (1994) (j) Swager (1997) (s) Chen et al. (2001)
 (b) Hammond and Nisbet (1992) (k) Blewett et al. (2004) (t) Hill et al. (1992) 
 (c) Painter and Groenewald (2001) (l) Witt (1994) (u) Nelson (1995) 
 (d) Swager and Griffi n (1990) (m) Hunter (1993) (v) Nemchin and Pidgeon (1998) 
 (e) Krapez et al. (2000) (n) Weinberg et al. (2003) (w) Turek (1966) 
 (f) Gresham and Loftus-Hills (1981) (o) Swager and Nelson (1997) (x) Clark et al. (2000) 
 (g) Archibald et al. (1981) (p) Swager et al. (1995) (y) Wingate et al. (2000) 
 (h) Nelson (1997) (q) Swager (1989) (z) Dawson et al. (2003) 
 (i) Kent and McDougall (1995) (r) Goleby et al. (1993) (za) Clarke (1994)
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Yilgarn Craton
The majority of outcrops on YARDILLA are Archaean and 
include granitic, metavolcanic, and metasedimentary 
rocks (Fig. 3). Variably deformed granitic rocks make 
up about one-third of the map area, predominantly on 
the western side of the sheet. The surrounding area 
is dominated by Archaean metasedimentary rocks, 
with minor metamorphosed mafi c and felsic volcanic 
and volcaniclastic rocks. The Archaean rocks are 
predominantly deeply weathered, with a thick cover of 
regolith that results in very poor exposure over much of 
YARDILLA. The best outcrops of Archaean rocks are on the 
western edges of the playa lake system in the northeast.

The Archaean rocks are intruded by the Proterozoic 
Binneringie and Jimberlana Dykes, and truncated in 
the southeastern corner of YARDILLA by Proterozoic 
amphibolite- to granulite-facies gneisses of the Fraser 
Range. In the northwest of YARDILLA the Proterozoic 
Woodline Formation forms an east-northeasterly 
trending belt (Fig. 3) overlying the Archaean rocks, and 
predominantly consists of quartzites, quartz conglomerates 
and shale.

Archaean geology
Poor exposure and the deeply weathered nature of most 
Archaean outcrops on YARDILLA limit the correlation of 
units and the identifi cation of a coherent stratigraphy. 
However, aeromagnetic imagery can be used to correlate 
greenstone units in the northern part of YARDILLA with 
those on adjacent map sheets (MOUNT BELCHES, ERAYINIA, 
and YARDINA; Fig. 1). Archaean metasedimentary rocks 
that dominate the northern part of YARDILLA are likely to 
represent a continuation of the units to the north. 

Metamorphosed fi ne-grained mafi c rocks 
(Abb, Ambs)

Fine-grained mafi c rocks form only a minor component 
of exposed Archaean rocks on YARDILLA, and the basalt 
(Abb) and foliated fine-grained mafic volcanic rocks 
(Ambs) are metamorphosed at lower- to middle-greenschist 
facies. These mafic rocks are at several locations on 
YARDILLA, including the northern margin of the playa lake 
system and the central area of the map sheet. Foliated 
mafi c rocks are common in localized zones within the 
nonfoliated basalt. 

The mafi c units are predominantly massive and fi ne 
grained, and lack textures such as amygdales and fl ow 
top breccias. In the northern area, basalt is interlayered 
with mafi c-derived volcanogenic sandstone, mudstone, 
and chert. The basalt typically has a fi ne interlocking, 
felted texture of chlorite, albite, and amphibole with minor 
quartz, plagioclase, and opaque minerals.

The only evidence of komatiitic characteristics is in 
saprolitic material on central YARDILLA (MGA 476077E 
6487028N), where relict pyroxene-spinifex textures 
indicate derivation from komatiitic basalt.
Geology of the Yardilla 1:100 000 sheet

Metamorphosed medium- to coarse-
grained mafi c rocks (Aod)

Dolerite (Aod), a medium-grained mafic rock meta-
morphosed at lower- to middle-greenschist facies, is only 
in a few scattered locations, typically in the central part 
of YARDILLA. The unit is typically massive and weakly 
foliated with ophitic to subophitic textures preserved. 
Dolerite is typically associated with fi ner grained mafi c 
rocks and may represent the coarser grained zones of 
differentiated mafi c fl ows.

Metamorphosed felsic volcanic rocks
(Af, Amfs, Afdp)

Felsic volcanic rocks (Af), metamorphosed at lower- to 
middle-greenschist facies, form scattered outcrops in 
the north, north and east of the playa lake system, and 
the central part of YARDILLA. These rocks are typically 
deeply weathered and identified in the field by small 
round quartz ‘eyes’ and subhedral to anhedral feldspar 
crystals in a fi ne- to medium-grained groundmass. In 
thin section they are characterized by a fine-grained 
quartzofeldspathic matrix with randomly oriented feldspar 
and minor quartz phenocrysts. The feldspar phenocrysts 
are moderately to strongly sericitized and quartz grains 
are commonly embayed. Minor fi ne epidote and accessory 
apatite grains are scattered throughout the fi ne matrix. 
Strongly foliated felsic volcanogenic rocks (Amfs) outcrop 
in the northern and central parts of YARDILLA, and are 
also recognized in the field by subhedral feldspar 
phenocrysts and quartz ‘eyes’ in a strongly foliated 
groundmass. 

Porphyritic dacite (to rhyodacite; Afdp) outcrops in 
several locations, including the northern part of YARDILLA, 
north and southeast of the playa lake system, and the 
central part of YARDILLA. The porphyritic unit north of 
the playa lake is identifi ed on aeromagnetic images as a 
distinct magnetic high about 500 m wide. The porphyritic 
volcanic rocks typically have a fi ner grained ground-
mass than the felsic volcanic rocks (Af ) and larger euhedral 
feldspar phenocrysts. In thin section the porphyritic 
volcanic rocks typically have abundant randomly 
oriented euhedral feldspar phenocrysts (up to 5 mm) 
and minor quartz phenocrysts in a very fi ne grained to 
glassy quartzofeldspathic groundmass. The feldspar 
phenocrysts are euhedral, commonly zoned, and 
moderately to strongly sericitized. Accessory apatite, 
titanite, epidote, and opaque minerals are observed 
throughout.

Metasedimentary rocks (As, Ash, Amls, 
Ass, Amhs, Amlsm, Ast, Amts, Astb, 
Amtq, Akl, Accb)
The majority of metasedimentary rocks exposed on 
YARDILLA are deeply weathered, but retain features 
indicating a sedimentary origin. These units are the most 
abundant rock types on YARDILLA and are best exposed on 
the northern and western edges of the playa lake system in 
the northern part of YARDILLA. 
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Figure 3. Interpreted Precambrian geology of YARDILLA
8



GSWA Explanatory Notes  

9

Undivided metasedimentary rocks (As) include meta-
morphosed mudstone, siltstone, and fi ne-grained sandstone. 
Fine-grained quartz–mica schist is included in this 
classifi cation because it retains relict sedimentary features 
such as bedding. These rocks are typically lateritized and 
commonly moderately to strongly foliated.

Mudstone or shale (Ash) and strongly foliated 
mudstone (Amls) are common in the northern part 
of YARDILLA and on the western sides of the playa 
lakes in the northeast. They are typically dark grey, 
carbonaceous, and interbedded with paler grey, fine-
grained sandstone. In places, small (1–5 mm) spherical 
pyritic concretions are scattered throughout the mudstone.
A weak to moderate foliation is present at most localities. 
Shale can be silicifi ed and is diffi cult to distinguish from 
banded chert (Accb). 

Siltstone and interbedded sandstone (Ass) are common 
on northern YARDILLA on the western side of the playa 
lake system. The unit is dominated by fine-grained 
dark-grey siltstone with paler millimetre- to centimetre-
scale interbeds of fine- to medium-grained sandstone 
and dark-grey mudstone. Sedimentary structures, such 
as graded beds, fl ame structures, scour marks, and rip-
up clasts are visible in fresher exposures on the lake 
edge (Fig. 4). However, most exposures are deeply 
weathered and moderately to strongly foliated (Amhs), 
and because bedding is not visible, classifi cation is based 
on local grain-size variations from siltstone to fi ne-grained 
sandstone. On the western shores of the northeastern 
playa lakes, the siltstone–sandstone unit becomes more 
micaceous (predominantly muscovite; Amlsm) with a 
distinct coarsening of mica towards the southeast and a 
noticeable increase in the degree of schistocity. In the 
metasedimentary rocks in the southwest there is also an 
increase in mica grain size and abundance towards the 
Yilgarn Craton margin.

Medium- to fi ne-grained quartzofeldspathic sandstone 
(Ast) outcrops on northern and western YARDILLA and 
typically has a grain size ranging from 1 to 3 mm. The 
facies is predominantly weakly foliated, but contains a 
strong tectonic fabric in places, such as at the western edge 
of the playa lakes (Amts). A sandstone derived from basalt 
(Astb) outcrops on northern YARDILLA, north of the playa 
lake system. Although the sandstone is predominantly 
massive, metre-scale bedding is visible in places, and at 
a broader scale the sandstone appears to be interlayered 
with basalt. Deep weathering makes this unit diffi cult to 
distinguish from the adjacent basalt, but in thin section the 
rock has abundant fi ne angular quartz clasts with chlorite, 
feldspar, and biotite forming a fi ne granular matrix. A 
weakly developed foliation is defi ned predominantly by 
aligned chlorite and muscovite, and appears to overprint 
an earlier planar fabric that may have been bedding. This 
early planar fabric is defi ned by slight variations in grain 
size and phyllosilicate content. 

Quartz-rich sedimentary rocks or quartzite (Amtq) 
outcrops on northwest YARDILLA and on the western side of 
the playa lake system. The quartzite is typically massive to 
weakly bedded at metre scale, with diffuse millimetre- to 
centimetre-scale bedding in places. In thin section the rock 
has a fi ne, granular, quartz-dominated matrix, with angular 
Geology of the Yardilla 1:100 000 sheet

irregular quartz grains that typically lack volcanogenic 
features such as embayments suggesting that the quartzites 
have a nonvolcanogenic origin.

Interbedded limestone and chert (Akl) form a low 
ridge in the northern part of YARDILLA (MGA 480260E 
6509160N). The limestone interbeds are typically pale 
grey–brown, fi ne grained, and range in thickness from 
1 to 20 cm, with pale-grey chert interbeds ranging from 
1 to 20 mm. The unit is strongly deformed, with dome-and-
basin fold-interference patterns common. In thin section 
the limestone dominantly has a micritic texture with minor 
sparry zones and scattered angular fi ne (<1 mm) detrital 
quartz grains. Carbonate layers are interbedded with fi ne 
recrystallized polymosaic quartz laminae. 

Chert (Accb) is relatively common in the northern part 
of YARDILLA, but rare in the south. It typically forms small 
narrow ridges and varies from strongly laminated, white, 
pale- and dark-grey, to black massive chert and diffusely 
banded black, red, and white chert. The chert is commonly 
interbedded with mudstone or siltstone. It is diffi cult to 

SJ10 11.05.04
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b)
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Figure 4. a–b) Interbedded sandstone and laminated 
mudstone, northeastern YARDILLA (MGA 481345E 
6495189N). Truncated cross beds, scoured bases 
and graded bedding in sandstone layers indicate 
younging directions
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determine the origin of the chert units in the absence of 
detailed petrographic studies, but they may represent 
diagenetic or supergene silicifi cation of graphitic and 
sulfi dic laminated mudstones and siltstones, rather than 
chemical sedimentary deposits accompanying tectonic 
quiescence. A few chert bands contain abundant iron 
oxides and commonly have hematite coatings that obscure 
original features. These units are similar in appearance 
to banded iron-formations, such as recorded on MOUNT 
BELCHES to the northwest (Painter and Groenewald, 2001). 
Many chert outcrops, particularly on the western side of 
the playa lake, are overlain by several metres of brecciated 
and randomly oriented angular chert clasts recemented in 
an iron-rich matrix. The breccia facies probably represent 
erosion and recementation during the Cainozoic. 

Granitic rocks (Ag, Amgsn, Amgsm, 
Agc, Agcm, Amgms)

Granitic rocks make up about one-fi fth of the exposed 
rocks on YARDILLA with most granitic rocks classifi ed 
as undivided (Ag) due to the deep weathering. Outcrops 
are typically strongly kaolinized, with no distinguishable 
feldspar, amphibole or mica to aid in their classifi cation. 
Much of the area in the granite terrain is dominated by 
granite-derived sand and soil interspersed with silcrete, 
calcrete, and scattered loose boulders of strongly 
weathered granite, which is mapped as relict material over 
granite (Rgpg).

Strongly foliated granite (Amgsn) and strongly foliated 
muscovite-rich granite (Amgsm) in the southern and 
eastern parts of YARDILLA are within the high-strain suture 
zone. Where granite is less weathered it is predominantly 
coarse-grained equigranular quartz monzonite (Agc) or 
medium-grained quartz monzonite (Agcm) with minor 
hornblende(–biotite). Granites may contain large zoned 
feldspar megacrysts up to 3 cm across. Strongly foliated 
monzogranite (Amgms) outcrops in the southwest and 
commonly has coarse mica (predominantly muscovite) up 
to 6 mm across. The mica is strongly aligned and together 
with elongate strained quartz ribbons defi nes a tectonic 
fabric. 

The quartz monzonites and monzogranites (Agc, Agcm, 
and Amgms) belong to the Erayinia ‘clan’ of Cassidy and 
Champion (2001). This ‘clan’ is unique to the eastern parts 
of KURNALPI (1:250 000) and WIDGIEMOOLTHA (1:250 000) 
and has a SHRIMP U–Pb zircon age of c. 2660–2645 Ma 
(Cassidy and Champion, 2001; Fletcher and McNaughton, 
2002). The geochemistry of these granites has been 
described by Johnson (1991), Champion and Sheraton 
(1997), and Smithies and Champion (1999). 

Low- to medium-grade metamorphic 
rocks (Amscm, Amsm, Amsmg, Amsqm)

Metamorphic rocks with an unknown protolith are 
predominantly observed in highly strained rocks in the 
southwestern, central, and northeastern parts of YARDILLA. 
These strongly deformed units are typically very deeply 
weathered, making identifi cation of a protolith even more 
diffi cult. 
0

Chlorite schist (Amscm) along the western edge of 
the playa lake system on northeastern YARDILLA has 
a well-developed schistosity dominated by strongly 
aligned medium-grained chlorite, muscovite, quartz, and 
clinozoisite, with minor magnetite giving the unit a slightly 
spotted appearance in the fi eld. The abundance of chlorite 
suggests that the schist is derived from a mafi c precursor. 
The most common unit in the zone marking the contact 
between the Yilgarn Craton and the Albany–Fraser Orogen 
is strongly foliated muscovite schist (Amsm) predominantly 
composed of fi ne- to medium-grained muscovite, and rare 
garnet (Amsmg). Quartz-rich muscovite schist (Amsqm) 
has a strong foliation defi ned by aligned muscovite and 
1–3 mm-wide elongate quartz ribbons.

Veins and dykes (g, gp, zq)

Small fi ne-grained granitic dykes (g), ranging from 2 to 
5 m in width, intrude basalt in the central part of YARDILLA. 
The dykes are typically steeply dipping with a north-
northeast trend and are weakly to strongly foliated. 

Small pegmatite and aplite dykes (gp) of unknown age 
intrude the Proterozoic gneisses of the Fraser Range. The 
pegmatite dykes contain quartz, feldspar, and muscovite, 
with minor tourmaline and titanite. They range from 1 to 
100 cm in width and intrude along northwesterly fractures 
(e.g. MGA 484790E 6460720N) and parallel to the gneissic 
banding (e.g. MGA 498005E 6461625N). Larger pegmatite 
dykes (gp) are common on adjacent YARDINA, where they 
are associated with the granitic bodies and mined at Bald 
Hill for tantalum from tantalite. 

Quartz veins (zq) are common on YARDILLA and 
typically composed of massive white quartz. Minor 
laminated and crystalline quartz veins are also observed. 
The veins rarely contain carbonate, and display a range 
of morphologies, including foliation- and bedding-
parallel, tension-gash arrays, and conjugate sets. Multiple 
generations of veins are present, with abundant folded and 
rodded pre-D2 quartz veins in metasedimentary rocks on 
the western edge of the playa lake system. These veins 
appear to be S1- or bedding-parallel veins (or both) that 
are commonly folded by F2 folds and overprinted by 
axial-planar syn-D2 veins. Large parallel sets of massive 
white quartz veins, up to 3 m wide and several hundred 
metres in length, are common throughout the area. These 
veins are surrounded by a wide apron of white quartz-vein 
colluvium (Cq).

Archaean deformation and 
metamorphism

The deformation history of the YARDILLA area is complex 
because it covers the southeastern margin of the Yilgarn 
Craton and the contact with the Mesoproterozoic Albany–
Fraser Orogen. Archaean structural trends on YARDILLA 
differ markedly from regional trends recognized elsewhere 
in the Eastern Goldfi elds Granite–Greenstone Terrane and 
refl ect the effects of Mesoproterozoic collision between 
the Yilgarn Craton and east Antarctica during the Albany–
Fraser Orogeny. The paucity of outcrop on YARDILLA 
combined with deep weathering made it diffi cult to obtain 



GSWA Explanatory Notes  

structural measurements for most of the area. However, 
excellent exposures on the western edges of the playa 
lakes in the northeast, particularly in the lake pavements, 
yielded valuable structural data and clear overprinting 
relationships. 

Five deformation events (D1 to D5) are recognized 
in Archaean rocks on YARDILLA and are summarized in 
Figure 5:
• D1 recumbent folding;
• tight upright folding from east-northeast–west-

southwest crustal shortening during the D2 event;
• regional-scale D3–D4 faults (only recognized on 

aeromagnetic images);
• D5 event related to deformation during the Albany–

Fraser Orogeny. 

At least four metamorphic events (M1–M4) have 
been recognized in the southeastern Eastern Goldfi elds 
Granite–Greenstone Terrane on YARDILLA (Table 1). The 
M4 event is related to the Albany–Fraser Orogeny and is 
described later.

The D1 event

The D1 event is recognized on YARDILLA by the development 
of a fi ne penetrative foliation (S1), commonly near-parallel 
to bedding, and rare tight to isoclinal recumbent F1 folds 
and thrusts (Fig. 6). A subhorizontal stretching lineation 
is commonly developed on the S1 surface, parallel to F1 
fold hinges, and is defi ned predominantly by recrystallized 
quartz. Common, early, bedding-parallel quartz veins are 
strongly deformed and rodded, with quartz rods parallel 
to L1 and F1 fold hinges. Early bedding-parallel quartz 
veins with distinct rodding are an unusual feature that 
appears to be a local phenomenon that has not been 
reported from adjacent areas in the Eastern Goldfi elds 
Geology of the Yardilla 1:100 000 sheet

Granite–Greenstone Terrane. The veining is useful for 
identifying timing relationships during later folding events. 
Although the recumbent style of D1 folding on YARDILLA is 
the same as D1 structures reported elsewhere in the Eastern 
Goldfields Granite–Greenstone Terrane, the timing of 
this event is still uncertain. Studies in the Kalgoorlie area 
suggest a range of ages for this event, from about 2700 to 
2675 Ma (Kent and McDougall, 1995; Nelson, 1997). D1 
structures have also been reported in the Mount Belches 
Formation to the northwest (Painter and Groenewald, 
2001). However, Krapez et al. (2000) dated zircons from 
the Mount Belches Formation on MOUNT BELCHES at 
2665 Ma, suggesting that deposition may have post-dated 
the regional D1 event. The D1 structures measured on 
YARDILLA may have been produced by a local event that 
pre-dated the regional D2 event. 

The D2 event

Deformation during the D2 event resulted in open to tight 
upright folds and variable development of a penetrative 
foliation (S2) during strong east–west compression (Fig. 7). 
The F2 fold hinges are prominent features on aeromagnetic 
images and refold earlier D1 fabrics. A good example of 
this is on the lake shore on northeastern YARDILLA (MGA 
491500E 6504070N), where a recumbent D1 fold in chert 
is refolded by an upright F2 fold (Fig. 6c). The penetrative 
S2 foliation is variably developed and is predominantly 
within 20°–30° of the S1 fabric due to the dominantly tight 
to isoclinal nature of F2 folds. The S2 fabric forms a well-
developed crenulation cleavage in hinge zones defi ned by 
aligned mica and is best developed in fi ne-grained pelitic 
units (Fig. 7b,c). Type-1 and Type-2 fold-interference 
patterns are developed locally between the F1 and F2 folds, 
with good dome-and-basin and dome–crescent–mushroom 
patterns. Dome-and-basin type patterns are best observed 
in Archaean carbonate rocks (Fig. 8). The style of F2 
11

Figure 5. Deformation sequence in Archaean rocks on YARDILLA
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Figure 6. Folding and faulting in Archaean rocks:
(a) Photograph and (b) sketch of isoclinal F1 fold
and small thrust in Archaean metasedimentary
rocks, northeast YARDILLA (MGA 481345E 6495190N). 
An early foliation (S1) is nearly parallel to the 
bedding and axial planar to the F1 fold thrust. 
A later northeast-trending penetrative foliation 
(S2) overprints the earlier fabric; c) recumbent D1 
fold hinge in chert, refolded by D2 (upright gently 
plunging F2 fold hinge), northeastern YARDILLA

(MGA 491500E 6504070N)
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folding and the associated crenulation cleavage (S2) on 
YARDILLA are similar to regional D2 structures observed 
elsewhere in the Eastern Goldfi elds Granite–Greenstone 
Terrane. However, on YARDILLA F2 fold axes and S2 
fabrics display northeasterly trends, rather than the more 
typical regional north-northwesterly trends, reflecting 
the overprinting effects of deformation related to the 
Albany–Fraser Orogeny.

The D3 and D4 events

Transpression during D3 and D4 resulted in largely reverse 
vertical and sinistral lateral movement on regional north-
northwesterly trending faults (Nelson, 1997; Swager, 
1997). These regional structures were not observed on 
YARDILLA, probably because of the lack of outcrop away 
from the playa lake system in the northeast. However, a 
large northwest-trending structure, with apparent sinistral 
offset in the western part of YARDILLA, can be seen on 
aeromagnetic images, and may represent a D3 or D4 fault 
because it is truncated by the Albany–Fraser Orogeny 
deformation front. This structure could represent an 
extension of the Cowarna Fault from MOUNT BELCHES to 
the northwest.

The M1 event

The M1 event in the Archaean rocks is characterized 
by lower greenschist-facies mineral assemblages of 
muscovite, quartz, chlorite and feldspar in meta-
sedimentary rocks. These minerals defi ne the bedding-
parallel penetrative S1 foliation. The alignment of the 
metamorphic mineral assemblage, parallel to S1, suggests 
that peak M1 metamorphic conditions were most likely 
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Figure 7. Deformation features from the D1 and D2 events: a) Typical upright D2 folds in interbedded siltstone–sandstone, 
northeastern YARDILLA (MGA 487610E 6511290N); b) photomicrograph illustrating the bedding-parallel S1 fabric being 
refolded by D2 folds, with a weak crenulation cleavage developing in places, northeastern YARDILLA (GSWA 165122, 
cross-polarized light); c) photomicrograph illustrating D2 folding of the S1 fabric which is defi ned by aligned muscovite 
and quartz, northeastern YARDILLA (GSWA 179122, cross-polarized light); d) stereoplots illustrating the spread of the 
lineations due to D2 folding, northeastern YARDILLA; e) an F2 fold refolds the L1 stretching lineation on the S1 surface 
(MGA 491500E 6504070N) 
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Figure 8. Dome-and-basin fold-interference structures 
representing F1 folds refolded by D2 folds, northern 
YARDILLA (MGA 480260E 6509160N)
1

contemporaneous with deformation during the D1 event. 
The precise timing of D1 is uncertain, with various authors 
giving ages that range from 2700 to 2675 Ma in the 
Kalgoorlie region (Kent and McDougall, 1995; Nelson, 
1997; Swager, 1997).

The M2 event

A regional low- to medium-grade event (M2) partially 
overprints the earlier metamorphism with a similar mineral 
assemblage of quartz–muscovite–chlorite–feldspar. 
Metamorphic mineral assemblages in metabasalts on 
northern YARDILLA are dominated by chlorite and feldspar. 
The dominance of chlorite and the lack of biotite and 
amphibole in metasedimentary and mafic rocks on 
YARDILLA suggests lower greenschist-facies conditions. 
A weak alignment of muscovite, quartz, and chlorite, 
parallel to the S2 crenulation cleavage, suggests that peak 
M2 metamorphic conditions were coeval with deformation 
during the D2 event. This regional low- to medium-grade 
event is common throughout the Eastern Goldfields 
Granite–Greenstone Terrane and is thought to broadly 
reflect the distribution of granitic rocks (Witt, 1991; 
Ridley, 1993; Swager 1997). Deformation during the 
3
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D2 event was most probably contemporaneous with the 
majority of granite emplacement at 2665–2640 Ma (Witt, 
1991; Nelson, 1997; Swager et al., 1997). 

The M3 event

M3 contact metamorphism in Archaean metasedimentary 
rocks adjacent to Proterozoic mafi c dykes, reported on 
MOUNT BELCHES to the north, is not observed on YARDILLA 
because the dykes typically intrude granite.

Proterozoic geology
Proterozoic rocks make up about one-third of the exposed 
rocks on YARDILLA and include the Widgiemooltha 
Dyke Suite and the Fraser dyke swarm in the west and 
northwest, scattered outcrops of Woodline Formation 
sedimentary rocks in the northwest, and the granulite- to 
amphibolite-facies gneisses of the Albany–Fraser Orogen 
in the southeast.

Widgiemooltha Dyke Suite (PLWIbi-od, 
PLWIji-od, PLWIji-ax, PLWIji-ow) 
The easterly trending Palaeoproterozoic Widgiemooltha 
Dyke Suite (Sofoulis, 1966) intrudes rocks of the Yilgarn 
Craton, and includes the Binneringie and Jimberlana 
Dykes (Fig. 3) that extend onto YARDILLA. The Binneringie 
Dyke (#WIbi-od) is the largest dyke in the Widgiemooltha 
Dyke Suite and is about 320 km in length with a maximum 
width of 3.2 km near Lake Cowan. Although it does not 
outcrop, a small part of the Binneringie Dyke is interpreted 
from magnetic data to extend into the extreme northwest 
corner of YARDILLA. The Jimberlana Dyke (#WIji-od) is 
180 km long, up to 2.5 km wide, and extends from the 
southwest corner to the central part of YARDILLA with a few 
reasonable exposures.

The dykes are relatively narrow within the granite 
and widen within supracrustal sequences. They are 
typically vertical to subvertical with sharp contacts and 
narrow chilled margins (Hallberg, 1987). At a regional 
scale the contacts are relatively straight, but in detail they 
are irregular with local embayments and small apophyses 
extending into the adjacent country rocks. There is 
only minor contact metamorphism, up to a metre in width, 
against the largest dykes (McCall and Peers, 1971).

Flow layering parallel to the dyke margins is rare along 
the Jimberlana Dyke on YARDILLA (e.g. MGA 462595E 
6473181N), but is more common in the smaller dykes 
(Hallberg, 1987). Vertical magmatic layering with both 
cryptic and rhythmic layering is reported from marginal 
zones in the Binneringie Dyke (McCall and Peers, 1971), 
but true phase layering with cumulate textures has only 
been reported from the Jimberlana Dyke (Campbell et al., 
1970). The Jimberlana Dyke is interpreted to be funnel-
shaped in cross section with an internal lopolithic structure 
formed by canoe-like structures, analogous to the Great 
Dyke of Zimbabwe (Campbell et al., 1970; Campbell, 
1991). At Bronzite Ridge near Norseman, three distinct 
successions have been interpreted in vertical sections 
based on scattered diamond drillhole intersections. Eight 
4

separate canoe-shaped complexes are recognized along 
about 100 km of the Jimberlana Dyke (Campbell et al., 
1970; Campbell, 1991; Hallberg, 1987; McClay and 
Campbell, 1976). 

On YARDILLA, exposures of the Jimberlana Dyke 
are separated into three units as follows: undivided 
Jimberlana Dyke (#WIji-od) comprising dolerite, gabbro, 
gabbronorite, and norite in areas with poor exposure; 
pyroxenite with only minor norite and gabbro (#WIji-ax); 
and norite with only minor pyroxenite (#WIji-ow).

The most precise age for the Widgiemooltha Dyke 
Suite is from the Binneringie Dyke where Nemchin and 
Pidgeon (1998) obtained an age of 2418 ± 3 Ma, based on 
the concordia intercept of three conventional baddeleyite 
U–Pb ages. This is within error of, and more precise 
than, the SHRIMP U–Pb baddeleyite age of 2420 ± 7 Ma 
(Nemchin and Pidgeon, 1998). The age is also within 
error of the combined Rb–Sr age of 2420 ± 30 Ma for the 
Celebration and Jimberlana Dykes (Turek, 1966) and the 
Sm–Nd isochron age of 2411 ± 52 Ma for the Jimberlana 
Dyke (Fletcher et al., 1987).

Woodline Formation (PLwo-s, PLwo-stq, 
PLwo-sxc)

The Woodline Formation (#wo-s; formerly known as 
the Woodline Beds; Griffi n, 1989) forms low ridges and 
scattered outcrops in a northeast-trending belt more than 
50 km long in the northwestern part of YARDILLA. The 
unit is about 250 m thick, based on drillhole data (Asarco 
Limited, 1969, 1971; WMC Limited, 1991), and consists 
predominantly of quartz arenite (#wo-stq), siltstone, and 
minor quartz conglomerate and mudstone (Figs 3 and 
9). In places, matrix- to clast-supported chert breccias 
(#wo-sxc), with chert clast sizes ranging from to 1 to 
20 cm, are interbedded with fi ner grained, well-sorted 
quartz-rich sandstone, minor chert, and mudstones. 
Although the base of the Woodline Formation is poorly 
exposed, there is an angular unconformity between the 
formation and the underlying Archaean rocks on ERAYINIA 
to the north (Jones, in prep.; Hall and Jones, 2005), and 
a similar relationship was reported by Griffi n (1989) on 
YARDINA to the west.

Woodline Formation rocks are gently folded with a 
weak to moderately developed spaced cleavage, and are 
metamorphosed at lower greenschist facies. Although 
weakly deformed, outcrops are typically relatively fresh 
and sedimentary structures such as tabular bedding, 
trough cross-bedding, rip-up clasts, ripple marks, sole 
marks, scour marks, and graded beds are well preserved 
(Fig. 10). Graded bedding, scoured bases, and truncated 
cross-bedding indicate upright bedding. 

The well-sorted, well-rounded, and quartz-rich nature 
of the sandstone units of the Woodline Formation indicates 
deposition distal from the source. The conglomerates, 
cross-bedded sandstones, ripple marks, and sole marks 
indicate a relatively high energy, possibly fluvial, 
depositional environment, such as a braided stream 
system. Trough cross-beds and ripple marks in Woodline 
Formation rocks on ERAYINIA to the north indicate a 
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Figure 9. Graphic log illustrating the general stratigraphy of the Woodline Formation from drillhole 
data (Asarco Limited, 1971)
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predominantly northwest to southeast fl ow direction (Hall 
and Jones, 2005). 

A maximum deposition age is provided by a SHRIMP 
U–Pb age of 1737 Ma from detrital zircons from 
the Woodline Formation (Hall and Jones, 2005) and a 
Rb–Sr isochron age of 1620 ± 100 Ma was obtained for 
the Woodline Formation by Turek (1966). These ages 
are similar to a recent date (1696 ± 7 Ma) obtained for 
the Mount Barren Group about 400 km to the southwest 
(Dawson et al., 2002), which may be a lateral equivalent 
of the Woodline Formation. The Woodline Formation 
was previously thought to represent an allochthonous 
block thrust onto the Yilgarn Craton during the Albany–
5

Fraser Orogeny (Myers, 1990). However, as most of 
the activity during the Albany–Fraser Orogeny occurred 
between 1300 and 1100 Ma, deposition of the Woodline 
Formation pre-dates the orogeny by 300–500 million 
years. The unconformable basal contact of the Woodline 
Formation and the lack of strong deformation also indicate 
fl uvial sedimentation on the Archaean basement, rather 
than an allochthonous thrust sheet. 

Fraser dyke swarm

The northeast-trending Fraser dyke swarm intrudes the 
southeastern Yilgarn Craton, parallel to the Albany–Fraser 
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Figure 10. Subhorizontal tabular beds in the Woodline 
Formation, northwest YARDILLA (MGA 456800E 
6497706N)

SJ11 11.03.04

Orogen. These dykes are predominantly composed 
of undeformed dolerite (Wingate et al., 2000). The 
Fraser dyke swarm does not outcrop on YARDILLA, but 
north-northeasterly trending dykes are inferred from 
aeromagnetic images. 

Wingate et al. (2000) obtained an age of 1212 ± 10 Ma 
for a northeast-trending dyke from an opencut mine at 
Kambalda, 100 km to the northwest. This is similar to the 
average age (1210 Ma; Evans, 1999) of the east-trending 
Gnowangerup dyke swarm in the western part of the 
Albany–Fraser Orogen. Wingate et al. (2000) suggested 
that the Fraser dyke swarm was emplaced coevally with 
the 1300–1100 Ma Albany–Fraser Orogeny, subparallel to 
the suture in a zone of fl exure formed by crustal loading 
during orogenesis. 

Albany–Fraser Orogen
The Albany–Fraser Orogen is an arcuate belt extending 
along the southern and southeastern margin of the Yilgarn 
Craton, and is characterized by high-grade gneisses and 
granitic rocks (Myers, 1990, 1995a). The belt records the 
Mesoproterozoic collision between the Yilgarn and east 
Antarctic Cratons between 1345 and 1100 Ma (Baksi and 
Wilson, 1980; Myers, 1995a; Nelson et al., 1995; Clark 
et al., 1999, 2000). Myers (1990) divided the orogen into 
6

the Biranup and Nornalup Complexes, based on lithology 
and structure. 

The Biranup Complex, which forms the northern 
part of the Orogen (Tyler and Hocking, 2001, 2002), 
consists of intensely deformed, tectonically interleaved 
quartzofeldspathic gneisses and mafi c granulites. In the 
Fraser Range area in the southeastern corner of YARDILLA, 
the Biranup Complex includes mafi c granulites that are 
part of a 35 × 400 km belt called the Fraser Complex by 
Myers (1985). The Nornalup Complex forms the southern 
and southeastern part of the Albany–Fraser Orogen. It is 
less intensely deformed than the Biranup Complex, and 
comprises orthogneiss and paragneiss intruded by granite. 
The metamorphic grade of the Nornalup Complex is 
typically upper amphibolite facies, with local hornblende–
granulite facies (Myers, 1990). The Nornalup Complex 
does not outcrop on YARDILLA.

Biranup Complex
The Biranup Complex on YARDILLA includes minor 
quartzofeldspathic gneisses interleaved with more 
abundant mafic granulites. Myers (1985) defined the 
Fraser Complex to include only the metamorphosed basic 
igneous rocks, and specifi cally excluded the intercalated 
felsic gneisses. This terminology is followed here.

Dalyup Gneiss (#da-mgn)

The Dalyup Gneiss (#da-mgn) is a granitic gneiss along 
the northwestern edge of the Albany–Fraser Orogen 
(Myers, 1995b) that in places is interleaved with Archaean 
rocks of the Yilgarn Craton. A U–Pb zircon age of 1670 ± 
15 Ma was obtained for granitic gneiss at 10 Mile Rocks 
(part of the Dalyup Gneiss), just southwest of YARDILLA 
(Nelson et al., 1995).

Metasedimentary gneiss (PLmdnBR)

Metasedimentary gneiss or paragneiss (#mdnBR) in 
the northwestern part of the Fraser Range on YARDILLA 
is intensely deformed with well-developed gneissic 
banding throughout. Granoblastic textures dominate 
and the gneissic bands are defined predominantly by 
polygonized quartz ribbons and minor garnets, ranging in 
size from 1 to 5 mm. The unit is dominated by quartz (up 
to 95–100%) with scattered garnet-rich zones, suggesting 
that the protolith may have been quartz-rich, such as a 
quartz sandstone. Some layers contain up to 20% feldspar 
and minor biotite, indicating a feldspathic protolith. The 
paragneiss typically forms wide outcrops, up to 50 m wide 
(e.g. MGA 499550E 6476840N), but is also interlayered at 
a metre scale with amphibolite gneiss and minor pyroxene 
gneiss.

Fraser Complex (#fr-moa, #fr-moo,
#fr-moom, #fr-xmoo-mg)

The Fraser Complex is dominated by mafi c granulites 
interpreted to be derived from layered intrusions that 
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Figure 11. Outcrops and textures of the Proterozoic Fraser 
Complex in the Fraser Range: a) typical outcrops, 
southeast YARDILLA (MGA 486388E 6463167N); 
b) typical gneissose textures of quartz–feldspar–
garnet-rich gneiss, Fraser Range (MGA 493575E 
6468090N)

included gabbros, anorthosite, and ultramafic rocks 
(Myers, 1985, 1995a). Most rocks are deformed and 
strongly recrystallized at granulite facies, or have 
retrogressed to upper amphibolite facies, but igneous 
textures and layering are rarely preserved. Myers (1985) 
identifi ed the following tectono-stratigraphic units:
• unit 1: garnet amphibolite, including ultramafi c igneous 

rocks, melanogabbro, and anorthosite; 
• unit 2: pyroxene granulite, with relict igneous textures 

suggesting derivation from gabbro or norite; 
• unit 3: metamorphosed leucogabbro, anorthosite, minor 

gabbro, and melanogabbro; 
• unit 4: mafi c granulite, similar to unit 2; 
• unit 5: mainly gabbro and metagabbro, possibly the 

precursor to units 2 and 4.

On YARDILLA these commonly interlayered units are too 
small to map at 1:100 000 scale, therefore they have been 
grouped into broad zones, about 150 to 300 m wide, based 
on the dominant gneiss type and magnetic characteristics 
(Fig. 11). 
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Crystallization, under granulite-facies conditions at 
1291 ± 21 Ma, occurred just before tectonic emplace-
ment of the Biranup Complex into the upper crust at 
1268 ± 20 Ma, and was associated with the major 
continent–continent collision event between the Yilgarn 
Craton margin and east Antarctica at c. 1300 Ma (Fletcher 
et al., 1991; Clark et al., 1999; 2000; Nelson, 1995; Nelson 
et al., 1995). 

Medium- to coarse-grained amphibolite (#fr-moa) 
is common in the northwestern part of the Fraser 
Range, forming large rounded outcrops on ridges just 
northwest of the Fraser Range Station boundary. The 
amphibolite is typically strongly banded and intensely 
deformed, with pale quartz–feldspar–garnet-rich bands 
interlayered with hornblende- and hornblende–garnet-rich 
layers (millimetres to centimetres wide). In thin section 
granoblastic textures dominate, with typical mineralogy 
including hornblende, quartz, garnet, plagioclase, and 
epidote, with or without biotite, representing a possible 
retrograde assemblage. Myers (1990) suggested that the 
granulite-facies rocks along the northwestern edge of the 
Fraser Complex were downgraded to amphibolite facies 
during emplacement at a higher crustal level. Throughout 
the northwestern part of the Fraser Range, the amphibolite 
is interlayered with abundant quartz- and quartz–garnet-
rich metasedimentary gneiss layers. 

 Pyroxene-rich mafi c granulite (#fr-moo) is the most 
widespread unit in the Fraser Range and consists of a 
range of mafic igneous protoliths, including gabbro, 
melanogabbro, and leucogabbro, commonly interlayered 
with charnockite. The mafi c units are medium to coarse 
grained, weakly to moderately magnetic, and variably 
deformed. Granoblastic textures dominate with completely 
recrystallized polygonal plagioclase, orthopyroxene, and 
clinopyroxene, but igneous textures are rarely preserved 
(Fig. 12a). Retrograde metamorphic reactions are indicated 
by amphibole and biotite in some samples (Fig. 12b).

In the centre of the Fraser Range a broad unit of 
pyroxene granulite is interlayered with numerous bands of 
granitic gneiss (#fr-xmoo-mg), ranging from 0.5 to 40 m 
wide. The proportion of granitic gneiss is much greater 
in this area and is refl ected by a zone of relatively low 
magnetic intensity on aeromagnetic images. The granitic 
gneiss bands commonly have abundant large augen and are 
composed of quartz, feldspar, and garnet, with accessory 
apatite and titanite. 

A band of high magnetic intensity in the southeastern 
corner of the map sheet marks a zone dominated 
by medium- to coarse-grained pyroxene-rich rocks
(#fr-moom) that have higher magnetic intensity than 
adjacent mafi c granulite. In the fi eld the mafi c granulite 
units (#fr-moo and #fr-moom) are very similar. 

Other Biranup Complex rocks (PLmnBR, 
PLmgnBR, PLmguBR)

Undivided gneiss (#mnBR) is used only for areas 
covered by thin colluvium where the strong northeast 
structural grain of the Fraser Complex is visible on aerial 
photographs and Landsat imagery.



Jones

1

Figure 12. Petrographic textures in Fraser Range gneisses:
a) relict igneous texture of interlocking subhedral 
plagioclase and pyroxene in a mafic gneiss,
Fraser Range (GSWA 179149, cross-polarized
light); b) ubiquitous biotite in a pyroxene gneiss 
may indicate retrograde metamorphism, Fraser
Range (GSWA 179152, plane-polarized light);
c) antiperthite texture in a large feldspar grain in 
a strongly recrystallized groundmass in granitic 
gneiss, Fraser Range (GSWA 179142, cross-
polarized light)

0.5 mm

0.5 mm
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Granitic gneiss (#mgnBR) and granitic augen gneiss 
(#mguBR) form abundant narrow bands (0.5 – 1 m wide) 
interlayered with mafi c pyroxene granulite throughout 
the area, particularly within the central part of the Fraser 
Range, where several 5–40 m-wide bands can be traced 
for several kilometres (e.g. MGA 491120E 6465370N and 
481170E 6458816N). Another granitic gneiss band (30 m 
wide) is in the northeastern part of the Fraser Range (e.g. 
MGA 497435E 6478420N). These bands form useful 
marker horizons to measure offset on northwesterly faults 
that are common throughout the area.

The granitic gneiss is typically composed of quartz, 
feldspar, garnet, and biotite, with accessory apatite, 
titanite, and opaque minerals (Fig. 11b). Feldspar augen 
are common, ranging in size from 0.5 to 5 cm. Textures 
are dominantly granoblastic with intensely recrystallized 
quartz and feldspar forming a compact mosaic. Gneissic 
banding is defi ned by aligned quartz ribbons, biotite, and 
fi ne-grained garnet. Undulose extinction, deformation 
twins, and subgrain growth are common throughout. 
Larger feldspar grains commonly display antiperthite 
textures (Fig. 12c), but these could be of metamorphic 
rather than igneous origin (cf. Spry, 1976). The presence 
of biotite in many samples could reflect retrograde 
reactions.

Albany–Fraser Orogeny
The Albany–Fraser Orogen is characterized by a northeast-
trending belt of high-grade gneisses and granitic rocks that 
truncate the north-northwesterly trending greenstone belts 
of the Yilgarn Craton (Gee, 1979; Myers, 1995a).

Multiple deformation episodes are recorded in 
the orogen, with the main activity (the Albany–Fraser 
Orogeny) thought to have occurred between 1345 and 
1100 Ma (Myers, 1995a; Nelson et al., 1995; Clark 
et al., 2000). Clark et al. (2000) recognized a two-stage 
history of the eastern part of the Albany–Fraser Orogen 
(east of Bremer Bay) based on structure, petrology, and 
geochronology. Two discrete thermotectonic stages 
between c. 1345 and 1260 Ma (Stage I) and between
c. 1214 and 1140 Ma (Stage II) have been identifi ed. These 
authors suggested that initial continent–continent collision 
at c. 1300 Ma was followed by intracratonic reactivation 
affecting basement and cover at c. 1200 Ma.

However, Dawson et al. (2003) suggested that peak 
thermal metamorphism was at 1205 ± 10 Ma, post-dating 
peak dynamic metamorphism (c. 1260 Ma; Clark et al., 
2000; Nelson, 1995) by at least 45 Ma. They related the 
peak thermal metamorphism to regional heating associated 
with the emplacement of 1215–1202 Ma dyke swarms and 
emplacement of 1200–1180 Ma granites into the orogen 
and the adjacent Yilgarn Craton. Dawson et al. (2003) 
suggested three tectonic settings for the Albany–Fraser 
Orogen, including a Stage I collision environment as a 
result of tectonic emplacement of the ‘Albany–Fraser 
Province’, an early Stage II anorogenic environment 
defined by a craton-scale thermal anomaly, and late 
Stage II reactivation of the orogen caused by renewed 
convergence.
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Figure 13. a) The stereoplots and interpreted aeromagnetic image (image courtesy of Fugro Airborne Surveys) illustrate the 
broad shift from regional north-northwest trends of metasedimentary rocks in northern YARDILLA and ERAYINIA to a local 
northeast trend, parallel to the Yilgarn Craton margin, in southern and northeastern YARDILLA. Clockwise rotation of 
the regional northwest trend of Archaean metasedimentary rocks into a local northeast trend parallel to the Yilgarn 
Craton margin suggests a large component of dextral displacement during the Albany–Fraser Orogeny. The wide 
spread of the S2 foliations and F2 fold axes in the rotated zone is probably a result of D5a folding; b) typical D5a open 
fold in lake pavement, northeastern YARDILLA (MGA 481840E 6495660N) with the poles to S2 foliation and F5a fold axes 
shown on the stereoplot below 
1

Deformation in Archaean rocks (the D5 
event)
The D5 event marks the onset of deformation related to 
the Albany–Fraser Orogeny in the Archaean rocks and 
is subdivided into the D5a, D5b, D5c, and D5d events. The 
D5a event is characterized by shallow to moderately 
northeasterly plunging open folds and warping during 
southeast–northwest compression. Large F5a folds 
defi ned by chert ridges in the north are visible on aerial 
photographs and aeromagnetic images. In the area close 
to the Yilgarn Craton margin, these folds plunge to the 
southeast as a result of clockwise rotation during the D5b 

event (Fig. 13a). A typical F5a fold of the S2 foliation in the 
northeastern part of YARDILLA is shown in Figure 13b, with 
9

measured F5a fold axes lying very close to the estimated 
β axis.

D5b dextral displacement along the Yilgarn Craton 
margin during the Mesoproterozoic collision is recognized 
by regional drag features on aeromagnetic images 
(Fig. 13a). The dextral displacement resulted in a large 
clockwise rotation (almost 90°) of the Archaean rocks 
adjacent to the boundary zone. In this area the north-
northwesterly trending D1 and D2 structures were rotated 
parallel to the suture and now display a local northeast 
trend, whereas D5a folds plunge to the southeast in the 
boundary zone. The stereoplots (Fig. 13a) illustrate the 
change from a regional north-northwest structural grain 
on northern YARDILLA and ERAYINIA to the dominantly 
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Figure 14. a) Spaced S5c cleavage in laminated mudstone 
(cleavage orientation 008°/42° NW; bedding 
orientation 122°/70°S), northeastern YARDILLA (MGA 
481345E 6495189N); b) intensely foliated quartz-rich 
muscovite schist (Alqm) in eastern YARDILLA (MGA 
485720E 6510420N). The S5c fabric is defi ned by 
elongate quartz ribbons and aligned mica

SJ18 11.05.05

a)

b)

S

NE

SS5C5C

northeasterly trend adjacent to the suture. The foliation 
data also show a much greater spread in the area close 
to the suture zone, refl ecting increased F5a folding in this 
zone. 

Continued northwest–southeast compression during 
D5c resulted in the development of a strong northeast-
striking steeply dipping cleavage (S5) in the highly 
strained Archaean rocks in the suture zone. The rocks here 
were typically strongly recrystallized and the cleavage 
is defined predominantly by aligned quartz ribbons 
and mica. Earlier D1 and D2 fabrics were typically 
destroyed or obscured by the late S5 cleavage. The fabric 
is first seen as a spaced cleavage (Fig. 14a), which 
increases in intensity towards the high-strain zone 
(Fig. 14b). This increase in fabric development was 
also accompanied by an increase in metamorphic grade 
towards the suture zone (see Metamorphism in Archaean 
rocks). 
Late offset of the rotated boundary-parallel fabrics 
along a large west-northwesterly striking brittle structure 
and possible antithetic northeast-trending faults in 
northeastern YARDILLA characterize the D5d event (Fig. 3). 
Abundant northeast-striking lineaments in granites seen 
on aeromagnetic images, and ubiquitous subvertical 
northeast-striking joints in outcrops, may also be related 
to this event. 

Deformation in the Woodline Formation

The Woodline Formation is typically only weakly 
deformed, with open upright folding and warping, and 
a weak to moderate cleavage developed locally. The 
formation predominantly has shallow to moderate dips 
and bedding is well preserved, with clear younging 
indicators indicating that beds are not overturned. Minor 
small thrusts are observed, but have a minimal effect on 
the stratigraphy. Southeast–northwest compression is 
suggested by broad fold axes, consistent with Albany–
Fraser Orogeny deformation associated with the D5 
event in the underlying Archaean rocks (Hall and Jones, 
2005).

Deformation in the Biranup Complex

The Biranup Complex on YARDILLA comprises subvertical 
tectonic slices of mafi c granulites and interlayered felsic 
gneisses ranging from 2 to 5 km in thickness. Gee (1979) 
and Myers (1995) suggested that this northeastern part of 
the Albany–Fraser Orogen, adjacent to the suture zone, 
may contain tectonically reworked remnants of the Yilgarn 
Craton interleaved with the younger rocks. 

Three deformation events (DF1 to DF3) are recognized 
in the rocks of the Biranup Complex in the Fraser 
Range on YARDILLA, and they record the complex 
deformation history of these high-grade rocks (Fig. 15). 
The deformation events recognized in the Biranup 
Complex of the Fraser Range on YARDILLA are similar 
to structures observed elsewhere in the Albany–Fraser 
Orogen. Deformation events throughout the Albany–Fraser 
Orogen are summarized for comparison in Table 2.

The DF1 event

The DF1 event is characterized by intense deformation that 
produced the northeast-striking, moderately to steeply 
dipping gneissic banding that is the dominant fabric in 
the Biranup Complex of the Fraser Range (Fig. 16a). The 
orientation of this fabric is consistent across the area, but 
the intensity of the fabric varies markedly from strongly 
deformed and completely recrystallized rocks to weakly 
banded zones displaying relict igneous textures. The 
well-developed fabric appears to be axial planar to rare 
isoclinal folds. A weakly developed, gently to moderately 
northeasterly plunging lineation (LF1) associated with 
the gneissic banding is best observed in the granitic 
augen gneiss, in which it is defi ned by an alignment of 
feldspar augen (Fig. 16g). The gneiss is dominated by 
a strong fl attening strain indicated by symmetric augen, 
but in places asymmetric tails on augen provide good 
shear-sense indicators (Fig. 16b,c), suggesting that 
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______  ___________________ Eastern Albany–Fraser Orogen ____________________
Myers (1995a); Nelson (1995); This study
Clark et al. (2000)

soclinal  S1 layer-parallel foliation, slightly precedes None recognized
 shear subhorizontal S1/S2 axial-planar fabric to

recumbent folds; no L1

tension NW–SE shortening, 1st phase of Stage I
deformation (Clark et al., 2000)

ck et al.,

nding  NE-striking steeply SE-dipping S3  NE-striking steeply dipping
fabric of Clark et al. (2000), axial-  foliation, DF1 event (this study)

nes planar to upright regional-scale NE- 
trending folds, some dextral asymmetry  Weak shallow NE-plunging
 (LF1) lineation; dextral shear-

 by  No lineations reported sense indicators
1170 Ma   

NW–SE bulk shortening — last phase  Dextral transpression
of Stage I deformation of Clark et al. (2000)
1315–1260 Ma (Black et al., 1992)

Discrete NE-striking subvertical to steeply  Subvertical NE-striking 
SE-dipping shear zones (S4 of Clark et al.,  shears, steep fi ne lineations 
2000), axial-planar to NW-verging isoclinal  — DF2 (this study)
folds; steeply plunging lineations
 NW–SE shortening
NW–SE shortening — early phase of Stage II 
deformation of Clark et al. (2000)

hears, ? NW-striking subvertical 
 brittle–ductile shears,
 DF3 (this study)

um age
al., 1992)

None reported None observed
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Table 2. Deformation events in the Albany–Fraser Or

____________________________________________________Western Albany–Fraser Orogen ______________________________________________
 Duebendorfer (2002) Beeson et al. (1988)  Holden (1994) Harris (1995) 
     

D1 Subhorizontal (S1) foliation Rare compositional layering (C1a)  Weak subhorizontal S1  S1a axial-planar foliation to i
 and recumbent folds, no L1 preserved in hinge zones, no L 1 compositional banding, no L1 folds; S1b ductile extensional
    zones, no L1 
 NW–SE shortening Dextral transcurrent with NW Subvertical shortening dominates
  shortening  NW thrusting followed by ex
 Coeval with peak granulite-   (orogenic collapse)  
 facies metamorphism   D1 ≅ M1  ≅ 1190 ± 8 Ma (Bla
    1992)

D2 Upright NW-vergent folds and  ENE-striking steep S2a shears ENE-striking S2a fabric, axial- Upright F1c open NE–SW tre
 subvertical NE-striking foliation  planar to variably plunging F2 folds;  folds, no S1c; no L2 
  Sparse L2 mineral elongation, subhorizontal L2 NW-striking normal shear zo
 Sparse L2 mineral elongation 25–45°E pitch  (S1d); F1d open folds 
   Local S2b LS tectonite at granite  
 Dextral transpression Open to isoclinal kilometre- contacts (no S2 fabric at Herald Point) NW–SE shortening followed
  scale folds,  overturned to NNW  NE–SE extension (?); 1190–
   Dextral shearing, NNW shortening (Black et al., 1992) 
  Dextral transcurrent with   
  NNW–SSE shortening component   

D2b? ? ? ? ? 
     
     
     
     
     
     

D3 Brittle–ductile conjugate  Conjugate brittle–ductile shear S3 shear zones and bands EW-  Conjugate brittle–ductile s
 WNW-striking dextral and  bands (C2a), variable sense of  to WNW –striking dextral, NNE- no L3 
 NNE-striking sinistral shear  displacement; Conjugate brittle– striking sinistral  
 zones, dextral shears dominate ductile shear bands (C2b);   NW–SE shortening, minim
   WNW-striking dextral  Subhorizontal L3 ≅ 1182 ± 12 Ma (Black et 
 Dextral transpressive regime N- to NNE-striking sinistral, no L3   
   Dextral transcurrent shearing 
  Dextral transpression with 
  NNW–SSE shortening

D4 S4 joints and extension fractures,  None reported Extension fractures oriented at 316° None reported 
 trending N–S and W–NW
 NW–SE shortening
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Figure 15. Deformation sequence in the Proterozoic gneisses of the Fraser Range, 
southeastern YARDILLA
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dextral displacement accompanied northwest–southeast 
compression during the DF1 event. 

The steep DF1 fabrics can be correlated with the 
regional D2 event of the Albany–Fraser Orogen (late Stage 
I of Clark et al., 2000). Dextral shear-sense indicators in 
DF1 fabrics in the Fraser Range gneisses and the clockwise 
rotation of D1–D5a fabrics in the Archaean rocks adjacent 
to the boundary are consistent with dextral transpression 
during the regional Albany–Fraser Orogeny D2 event 
(Clark et al., 2000).

Regional Albany–Fraser Orogeny D1 structures are 
not recognized on YARDILLA, and are generally only 
partially preserved in other parts of the orogen as a weak 
compositional layering, axial planar to recumbent folds, 
and formed during northwest–southeast shortening (e.g. 
Beeson et al., 1988; Clark et al., 2000; Duebendorfer, 
2002; Holden, 1994). This event was reported as an early 
phase of Stage I Albany–Fraser Orogeny deformation by 
Clark et al. (2000).

The DF2 event

DF2 produced steeply dipping shear bands, with a steeply 
plunging lineation that overprints the gneissic banding 
(Fig. 16d). The stereoplots (Fig. 16e,f) illustrate this 
fabric and the marked contrast in the plunge of lineations 
compared to the shallow lineations of the dominant DF1 
gneissic banding. A reverse sense of shear has been 
observed on many of the shear bands, but further work 
is necessary to establish the dominant sense of shear. 
This event could be a result of a slight rotation in the 
stress axes during the collision event, and may represent 
a reactivation of the pre-existing planar fabric during 
continued compression. The discrete northeast-striking 
DF2 shear bands on YARDILLA are similar to shear bands 
documented by Myers (1995a) and Clark et al. (2000), 
2

and are attributed to an early phase of Stage II deformation 
during renewed northwest–southeast shortening. 

The DF3 event

The youngest structures observed in the Biranup Complex 
of the Fraser Range are subvertical planar northwest-
striking DF3 faults. Apparent offsets on these structures 
range from centimetres to 100 m as estimated from 
aeromagnetic images and fi eld observations. Abundant 
fault-parallel fracture sets are also a common feature of 
many outcrops (Fig. 17a,b) and at one location (MGA 
484790E 6460720N) small aplite dykes intrude along 
the northwest-trending structures (Fig. 17c). The late 
crosscutting northwest-striking faults on YARDILLA appear 
most similar to conjugate D3 shears recognized in the 
western part of the Albany–Fraser Orogen (Duebendorfer, 
2002; Beeson et al., 1988; Holden, 1994; Harris, 1995). 

Metamorphism in Archaean rocks
(the M4 event)

The M4 event is associated with deformation related 
to the Albany–Fraser Orogen and is characterized by a 
greenschist- to amphibolite-facies overprint in Archaean 
rocks, and greenschist-facies metamorphism of the 
Proterozoic Woodline Formation. The metamorphic grade 
of Archaean rocks adjacent to the contact between the 
Yilgarn Craton and the Albany–Fraser Orogen increases 
from greenschist to amphibolite facies and is characterized 
by a distinct coarsening of mica from less than 0.5 to 
2 mm, and an associated increase in schistocity. This 
boundary is not a true isograd because there is no change 
in the mineral assemblage, but original features, such 
as bedding and other sedimentary structures common in 
rocks to the north and west, are obscured by the increasing 
schistosity. On the western side of the playa lakes on 
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Figure 16. a) Gneissic banding in granitic augen gneiss, Fraser Range (MGA 491070E 6465360N); b–c) asymmetric 
augen provide dextral shear-sense indicators in northeast-striking, steeply north-dipping granitic augen 
gneiss, Fraser Range (MGA 491070E 6465360N); d) steep SF2 shear bands with steep lineations overprint 
the dominant gneissic banding (SF1) in Fraser Range gneisses (MGA 491260E 6465550N); arrows indicate 
sense of movement; e–f) stereoplots illustrate the differences between the early gneissic banding (DF1) 
and the overprinting DF2 shear bands with the steep lineations; g) gneissic banding (DF1) displays a 
weak gently northeast-plunging lineation defi ned by an alignment of large elongate feldspar augen 
(MGA 485880E 6463105N) 
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Figure 17. a–b) Late northwest-trending subvertical faults
and associated fractures are common through-
out the Fraser Range (MGA 486210E 6462880N); 
c) minor aplite dykes intrude subparallel to the 
northwest fracture set (MGA 484790E 6460720N)

northeast YARDILLA, mineral assemblages in rocks east 
of the ‘isograd’ include quartz–muscovite–feldspar, 
quartz–muscovite–feldspar–clinozoisite, and quartz–
muscovite–feldspar–chlorite–clinozoisite, which suggest 
greenschist-facies conditions. No metamorphic effects 
related to the Albany–Fraser Orogeny are recognized west 
of this boundary, except for the lower greenschist-facies 
metamorphism of the Proterozoic Woodline Formation on 
northwest YARDILLA.

A garnet isograd close to the margin of the Yilgarn 
Craton marks the fi rst appearance of garnet in pelitic rocks. 
Garnet composition is unknown, due to deep weathering of 
these rocks, and the majority of garnet porphyroblasts are 
pseudomorphed by iron oxides in outcrop (Fig. 18). The 
increasing metamorphic grade of Archaean rocks towards 
the boundary, from greenschist to amphibolite facies, 
could represent uplift associated with the collision, with 
exposure of deeper crustal levels adjacent to the suture 
zone. Alternatively, the increasing grade could refl ect the 
thermal effects of deformation during the Albany–Fraser 
Orogen.
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Figure 18. Pseudomorphs after garnet in metasiltstone indicate an increase in metamorphic grade to amphibolite 
facies along the southeastern margin of the Yilgarn Craton (MGA 465950E 6460000N, GSWA 179136, 
plane-polarized light)
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Metamorphism in the Biranup Complex

The Proterozoic rocks of the Biranup Complex in the 
Fraser Range are predominantly at granulite facies, 
refl ecting the considerable exhumation associated with 
the Albany–Fraser Orogeny. Medium- to coarse-grained 
granoblastic textures dominate, but the degree of textural 
modifi cation differs markedly between narrow zones of 
intense deformation and broad, weakly deformed zones, 
where some igneous textures are preserved (Fig. 12a). 
The intensity of deformation and recrystallization also 
increases markedly towards the boundary zone, with 
mylonitic fabrics commonly developed. Metamorphic 
mineral assemblages in the mafi c gneisses are typically 
orthopyroxene, clinopyroxene, albite, quartz, garnet, 
and minor biotite. Quartzofeldspathic gneisses typically 
consist of quartz, albite, garnet, and minor biotite. The 
presence of biotite suggests some retrograde reactions 
(Fig. 12b). Although irregular bleb-like inclusions that 
are common in the larger feldspar grains may represent 
relict igneous perthite or antiperthite textures (Fig. 12c), 
the dominantly granoblastic textures of these rocks 
indicate recrystallization and the bleb-like inclusions are 
more likely to represent exsolution during deformation 
and metamorphism. Antiperthitic textures are a common 
feature of granulites and charnockites (Spry, 1976).

A gradational change to lower grade amphibolite-
facies rocks towards the northwestern margin of the 
Proterozoic Albany–Fraser Orogen refl ects retrogressive 
metamorphism associated with uplift and emplacement 
5

of granulite-facies rocks into the upper crust, against 
the lower grade rocks of the Yilgarn Craton margin. 
Metamorphic mineral assemblages in mafi c gneiss include 
hornblende, quartz, feldspar, garnet, biotite, and epidote, 
and felsic gneisses contain quartz, feldspar, garnet, and 
minor biotite. Granoblastic textures dominate, with most 
rocks being strongly recrystallized, and relict igneous or 
sedimentary textures are absent.

Cainozoic geology
The Cainozoic geology of YARDILLA is characterized by 
deposits of deltaic to marine sediments in palaeodrainage 
channels that had formed before the Jurassic, and by deep 
weathering profi les and lateritization. The deposition of 
deltaic to marine sediments was the result of extensive 
marine transgressions during the Eocene, which affected 
the southern part of Western Australia, including 
southeastern parts of the Yilgarn Craton. These sediments 
form the Eundynie Group, whereas the deep weathering 
profi les are assigned to assorted regolith units.

Eundynie Group (EeEU-s, EeEU-kl)
The Eocene Eundynie Group comprises fl uviodeltaic, 
estuarine to marine sediments, and is observed 
throughout the southern Eastern Goldfields Granite–
Greenstone Terrane, predominantly within large dendritic 
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palaeodrainage channels such as the Cowan and Lefroy 
palaeodrainages, which formed at the margins of the 
Eucla Basin. On YARDILLA the palaeodrainage channels are 
spatially associated with the present-day drainage systems. 
Chains of small playa lakes near the western edge and the 
northeast of YARDILLA outline palaeodrainage channels 
flowing north and east towards the confluence of the 
Lefroy and Cowan palaeodrainage channels. This drainage 
system is also described in the hydrogeology report of 
WIDGIEMOOLTHA (1:250 000; Kern, 1996). Although the 
Cowan system now fl ows south to the Bremer Basin, 
it is thought to have originally fl owed to the northeast, 
based on the acute angle of convergence with the Lefroy 
system (Hocking and Cockbain, 1990; and Clarke, 1994). 
Reversal of the Cowan Palaeochannel, as a result of uplift 
along the Jarrahwood Axis between the Cowan and Lefroy 
palaeochannels, occurred during post-Eocene warping 
of the area. Dips of up to 8° are recorded on some of the 
large tabular bedded sandstone units of the Eundynie 
Group on northern YARDILLA, and similar dips are observed 
farther north on MOUNT BELCHES (Painter and Groenewald, 
2001).

Outcrops of undivided Eundynie Group (EeEU-s) are 
most common in the northeastern and central parts of 
YARDILLA, and are spatially associated with the modern 
drainage channels. Undivided Eundynie Group consists 
of a range of facies, including poorly sorted fine- to 
medium-grained sandstone, interbedded siltstone, and 
mudstone, conglomerate, and iron-cemented gravel 
lenses, and spongolite. The outcrops are typically deeply 
weathered, with ubiquitous iron staining and silicifi cation 
obscuring many original features. The sediments are only 
weakly to moderately consolidated and silcrete or calcrete 
commonly forms a cap over the outcrops. Poorly sorted, 
variably spongolitic sandstone is the most common Eocene 
unit, and is typically massive to weakly bedded with fl at-
lying metre-scale tabular beds. The fl at-lying nature of the 
Eundynie Group and the silcrete and calcrete caps result 
in the formation of scarps and ‘mesa-type’ outcrops. This 
unit is more than 30 m thick, forming scarps up to 20 m 
high beside the playa lakes in the northeast and northwest, 
with similar thicknesses recorded in RAB drillholes on 
northern YARDILLA. Sponge spicules and fi ne irregular 
burrows, predominantly 1–2 mm wide (?feeding traces), 
are the only fossils observed in this unit, whereas bivalve 
fragments are relatively common in the semiconsolidated 
sandstone farther north on ERAYINIA (Jones, in prep.).

The iron-rich variably spongolitic sandstone unit 
unconformably overlies a lower unit of white clay 
and cross-bedded and channelized quartz sand, with 
scattered plant rootlets in situ and carbonized wood 
fragments within white clay-rich layers, carbonized silt, 
and lignite horizons. This unit is only observed in rare 
vertical sections exposed along the western edge of the 
northeastern playa lake system, and in drillholes targeting 
lignite deposits in the southwest and northeast of YARDILLA. 
A sharp angular unconformity between this basal clay-
rich unit and the underlying Archaean basement is well 
exposed along the western edge of the playa lakes on 
northeast YARDILLA (Fig. 19).

Minor limestone (EeEU-kl) outcrops in the most 
northern part of the map, on the northern shore of 
the northeastern playa lake system. This is a clastic 
nonfossiliferous limestone with laminated mudstone 
clasts, nodules, and detrital quartz grains. The limestone 
is massive to weakly bedded with metre-scale tabular 
bedding, and weathered outcrops have a fluted 
appearance.

The Cainozoic stratigraphy of the Eucla Basin 
presented by Clarke et al. (2003) is summarized in 
Figure 20. On YARDILLA the majority of outcrops 
of undivided Eundynie Group comprise spongolitic 
sandstone and associated sedimentary rocks that most 
likely correlate with the Late Eocene Pallinup Formation 
(Cowan Palaeochannel) or Princess Royal Member and 
Hampton Sandstone (Lefroy Palaeochannel; Clarke 
et al., 2003). In the Lefroy Palaeochannel the Hampton 
Sandstone interfi ngers with the spongolitic Princess Royal 
Member and was described by Clarke (1994) as a fi ne-
grained to gravelly glauconitic sand, locally weakly 
cemented to sandstone. The unit contains a marine fauna 
with the most common fossils being siliceous sponge 
spicules.

The underlying quartz sands, clay, and lignite units 
that are observed in rare vertical sections adjacent to 
the playa lakes most likely belong to the nonmarine to 
marginal-marine Middle Eocene North Royal Formation 
(or Pidinga Formation, Lefroy Palaeochannel; Lower 
Werrillup Formation, Cowan Palaeochannel). Clarke et al. 
(2003) suggested that the North Royal Formation includes 
all Middle Eocene clastic rocks and lignites deposited in 
nonmarine to marginal-marine environments along the 
margins of the Eucla Basin in Western Australia. These 
sediments most likely represent fl oodplain and channel 
sedimentation, with the abundant in situ plant roots 
indicating a predominantly well-drained environment 
supporting rainforest (Clarke, 1994).

It is diffi cult to correlate the limestone unit in the 
northern part of YARDILLA with other limestones in the 
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Figure 19. Sharp angular unconformity between the white 
kaolin-rich North Royal Formation and steeply 
dipping strongly foliated Archaean saprock, 
northeastern YARDILLA (MGA 482210E 6501525N)
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Figure 20. Stratigraphy of the Eocene Eundynie Group in the Cowan and Lefroy palaeodrainage channels on YARDILLA (after 
Clarke, 1994). It is likely that most outcrops of Cainozoic sedimentary rocks on YARDILLA belong to the Princess Royal 
Member (or Pallinup Formation) and the North Royal Formation
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Lefroy palaeodrainage system due to the discontinuous 
nature of the outcrop and the absence of fossils. Painter 
and Groenewald (2001) reported a limestone in the 
upper part of the Hampton Sandstone with similarities 
to the Norseman Limestone and to the limestone unit on 
YARDILLA.

The Cainozoic sedimentary sequence reflects two 
marine transgressions during the Middle to Late Eocene 
(Clarke, 1994; Clarke et al., 2003). The fi rst transgression, 
the Tortichilla, resulted in the deposition of fl uviodeltaic 
to estuarine sediments (Werrillup Formation) on the 
lignitic sediments of the North Royal Formation. The 
second transgression, the Tuketja, was more extensive, 
and during the high stand the spongolitic Princess Royal 
Formation was deposited in an estuarine environment. 
The interfi ngering Hampton Sandstone was deposited in 
a relatively high-energy environment such as a near-shore 
beach, estuarine, or delta top environment (Jones, 1990; 
Clarke, 1994). The limestone on the northern shore of the 
playa lake system on YARDILLA was probably deposited 
during a high stand, but the absence of fossils and the 
discontinuous nature of the outcrop make it diffi cult to 
determine the timing of deposition.

Regolith
The prolonged stability of the Yilgarn Craton, combined 
with marked climate change from wet, humid conditions in 
the Palaeogene to semi-arid conditions that have prevailed 
from the Neogene has resulted in deep weathering and 
the development of complex regolith profi les (Anand and 
Paine, 2002). On YARDILLA much of the area is covered 
by thick sheetwash or eolian deposits (or both). The lack 
of signifi cant relief and the dense vegetation cover on 
YARDILLA limited the effectiveness of satellite imagery 
and aerial photograph interpretation during the mapping 
of regolith units. 

Residual and relict units (Rf, Rgpg, 
Rmp, Rk, Rs, Rz, Rzi, Rzu)
Residual lateritic profi les are best exposed in breakaways 
in the northern part of YARDILLA, where the deeply 
weathered bedrock grades upward into kaolinitic 
saprolite and a mottled zone that is variably kaolinitic and 
ferruginous, typically capped by a variably siliceous and 
ferruginous duricrust. At most localities only this duricrust 
is observed.

Ferruginous duricrust (Rf ) is observed over a range 
of rock types, from Proterozoic gneisses in the Fraser 
Range to Archaean metasedimentary rocks and Cainozoic 
sedimentary rocks. Ferruginous duricrust typically 
comprises hematite with lesser amounts of goethite and 
minor siliceous lenses, and forms low ridges of massive 
to rubbly outcrops that are particularly common above the 
Cainozoic Eundynie Group on northern YARDILLA.

Residual material over granite (Rg ,  Rgpg) is 
predominantly clay- and quartz-sand-rich soil of granitic 
composition, with minor silcrete, calcrete, and poorly 
exposed weathered granite boulders. These deposits are 
common in the western part of YARDILLA and over granites 
in the boundary zone between the Yilgarn Craton margin 
and the Proterozoic gneisses.

Residual deep-red unconsolidated soil overlying mafi c 
and ultramafi c Proterozoic rocks (Rmu) is restricted to 
areas overlying the Jimberlana Dyke in the southwestern 
corner of the map sheet. 
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Residual calcrete (Rk) is common on YARDILLA, 
particularly in the south and east, and forms low ridges 
and rubbly outcrops that are commonly surrounded by 
colluvium with abundant loose calcrete nodules and 
fragments (Ck).

Quartz-rich residual sand (Rs) is predominantly above 
granitic units and deeply weathered quartz-rich gneisses 
in the high-strain zone at the edge of the Yilgarn Craton in 
the central and northeastern parts of YARDILLA.

 Silcrete (Rz) and ferruginous silcrete (Rzi) are most 
commonly formed over the Cainozoic Eundynie Group 
sedimentary rocks on northern and eastern parts of 
YARDILLA, and also over granites on western YARDILLA. 
The silcrete typically forms rubbly outcrops on low hills 
and small breakaways and is predominantly milky-white 
and cream to red-brown, depending on the iron content. 
Silcrete is also developed over ultramafi c rocks (Rzu) of 
the Jimberlana Dyke on southwestern YARDILLA.

Colluvium and sheetwash (C, Cf, 
Cg, Ck, Cm, Cq, Ct, Cts, W, Wf, Wg, 
Wk, Wq)
On YARDILLA the distinction between colluvium and 
sheetwash is based on slope. Colluvium (C) is present on 
gently sloping or undulating ground, whereas sheetwash 
(W) is deposited on subhorizontal ground or gently sloping 
plains adjacent to Quaternary alluvial channels. Undivided 
colluvium (C) and sheetwash (W) are predominantly 
composed of clay, silt, sand, calcrete and silcrete 
fragments, lithic clasts, and minor ferruginous granules 
and nodules. Iron-rich colluvium (Cf ) and sheetwash 
(Wf ) predominantly consists of fi ne ferruginous granules 
and lateritic gravel, and are most common adjacent to the 
Proterozoic mafi c dyke on southwestern YARDILLA. 

Quartzofeldspathic colluvium (Cg) and sheetwash 
(Wg), above and adjacent to granitic rocks on western 
YARDILLA, are composed predominantly of clay, quartz 
sand, and lithic fragments of granitic composition. 
Calcrete-rich colluvium (Ck) and sheetwash (Wk) deposits 
have significant proportions of calcrete nodules and 
fragments, and the colluvial deposits commonly form 
low ridges, particularly in the southern and eastern parts 
of YARDILLA. Colluvium derived from ferromagnesian 
rocks (Cm) overlies, and is adjacent to, outcrops of 
the Jimberlana Dyke on southwestern YARDILLA. Quartz-
rich colluvium (Cq) and sheetwash (Wq) are composed 
of angular vein-quartz fragments and are common on 
the edges of the playa lakes and around large quartz 
veins. 

Lithic-rich colluvium (Ct) lies on slopes immediately 
adjacent to outcrops and contains a high proportion of 
lithic clasts. This unit is common beneath the low scarps 
formed by the Cainozoic Eundynie Group on northern 
YARDILLA. Colluvium adjacent to the Woodline Formation 
(Cts) on northwestern YARDILLA forms a distinct apron 
around these quartz-rich outcrops.
8

Lacustrine units and sandplains 
(Lp, Ld, Ld1, Ld2, Lm, S)
Two playa-lake systems on YARDILLA form tributaries 
of the Lefroy Palaeochannel (Clarke, 1994), with one 
extending northwards from the southwestern corner 
and a larger system covering northeastern YARDILLA. 
Both systems drain to the north and include playas (Lp), 
undivided dunes (Ld), active dunes (Ld1), stabilized dunes 
(Ld2), and areas of mixed deposits (Lm). The playa lake 
systems are made up of chains of small lakes, separated 
by sand dunes, alluvial deposits, and small channels, and 
the lakes form fl at expanses of clay, mud, and sand with 
abundant gypsum, halite, and carbonate. Active dunes 
are variably composed of orange–yellow eolian sand 
and gypsum, and are typically nonvegetated or have only 
minor vegetation consisting predominantly of samphire 
and saltbush. Stabilized dunes consist of eolian sand 
and clay and are vegetated predominantly by eucalypts, 
but also support Casuarina and cypress in places. Mixed 
lacustrine deposits on broad plains adjacent to the playa 
lakes consist of closely interspersed dunes, small lakes, 
and alluvial deposits.

Sandplain deposits (S) are predominantly composed 
of orange quartz sand and form an undulating terrain 
with scattered dunes, most commonly in the northeast of 
YARDILLA, east of the playa lakes.

Alluvial units (A, Ap)
Quaternary alluvium (A) on YARDILLA includes ephemeral 
stream-channel, overbank, and deltaic deposits. 
Alluvium consists of clay, silt, sand, and gravel of mixed 
composition. Nonvegetated to semivegetated clay- and 
silt-fi lled claypans (Ap) are relatively common along the 
drainage systems throughout YARDILLA. 

Economic geology
The only commodity produced on YARDILLA is dimension 
stone from the Fraser Range gneisses. Surface and 
near-surface exploration has been carried out for many 
commodities, including gold, base metals, uranium, 
diamonds, and lignite. Various techniques have 
been employed, including rotary air blast (RAB), 
reverse circulation (RC), and diamond drilling, 
geological mapping, geophysics, and rock-chip and soil 
sampling.

Kimberlite and lamproite 
mineralization

Precious mineral — diamond

On YARDILLA diamond exploration activity has concentrated 
on aeromagnetic and gravity anomalies within the suture 
zone and along the Fraser Range. Magnetic anomalies in 
this area were tested by RC and aircore drilling by CRA 
Exploration Pty Limited (1994), but did not intersect any 
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kimberlitic rocks. Diamond exploration has also been 
undertaken along the southeastern margin of the Yilgarn 
Craton by a number of companies, including Quadrant 
Resources – Stockdale Limited (1999), but no kimberlitic 
indicator minerals were found.

Pegmatitic mineralization
Speciality metal — tantalum
Tantalite [(Fe,Mn)(Ta,Nb)2O6] is mined from pegmatites 
at the Bald Hill tantalum mine, east of Widgiemooltha, on 
the adjacent map sheet (YARDINA), but similar occurrences 
have not been discovered on YARDILLA. A single specimen 
of euxenite [(Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6] was reported 
from a pegmatite in the Fraser Range (Miles et al., 
1945).

Orthomagmatic mafi c and 
ultramafi c mineralization — 
layered-mafi c intrusions
Precious metal — platinum group 
elements
Avoca Resources Ltd are currently exploring around the 
Jimberlana Dyke for platinum group elements (PGE).

The PGE potential of the Fraser Complex has been 
discussed by Gibson (1989) based on the lithological and 
chronological similarities with the Bushveld Complex 
of Africa. In an area 100 km east of the Fraser Range 
Homestead, pyroxenite, gabbro and anorthosite with 
more than 5% Cr2O3 returned platinum values between 
58 and 800 ppb, which Gibson (1989) recognized as 
similar to abundances in the Bushveld Complex. A 
GSWA geochemical mapping project (Morris et al., 2000) 
indicated that PGE values were predominantly low in the 
regolith, but higher values were reported in regolith with 
higher Cr, Ni, and MgO associated with the Jimberlana 
Dyke in the southwest of YARDILLA.

Base metal and steel industry metals 
— copper and nickel 
There has been sporadic exploration activity for copper, 
lead, zinc, and nickel across YARDILLA. The only anomalous 
results reported are from within a narrow zone close to the 
western margin or ‘front’ of the Fraser Range. Minor 
disseminated copper–nickel sulfide mineralization in 
mafi c–ultramafi c rocks of the Fraser Complex, just south 
of YARDILLA, was recognized by Newmont Pty Ltd in the 
1960s (Newmont Proprietary Limited, 1972; Tyrwhitt and 
Orridge, 1975).

Exploration for nickel–copper sulfides in the 
Proterozoic Jimberlana Dyke was carried out by a number 
of companies, with the most significant exploration 
programs by WMC Ltd and Newmont Pty Ltd in the late 
1960s to early 1970s and middle–late 1980s (Newmont 
Proprietary Limited, 1972; WMC Limited, 1972). 
Geology of the Yardilla 1:100 000 sheet

Vein and hydrothermal 
mineralization — undivided
Precious metal — gold
Although gold deposits and prospects have been reported 
on adjacent sheets, including the Karonie gold mine 
and French Kiss prospect to the north on ERAYINIA, and 
anomalous gold grades have been reported from soil, 
rock-chip, and drillhole samples, no intersections of 
economic grade have been reported on YARDILLA. Regional 
geochemical mapping of the Fraser Range region (Morris 
et al., 2000) covering YARDILLA assayed typically low gold 
concentrations in the regolith, with the most signifi cant 
anomaly of 26 ppb identifi ed near the southern extension 
of the Cowarna Fault in the central part of YARDILLA.

There have been limited RAB drilling programs 
following up gold anomalies in soil or rock-chip samples, 
and testing structural targets identifi ed by geophysical 
surveys, with the most extensive programs on northern 
YARDILLA (Kilkenny Gold NL, 1997), central YARDILLA 
(Aztec Mining Company Limited, 1994), and eastern 
YARDILLA, about 10 km northwest of Fraser Range Station 
(Sipa–Ashling Joint Venture, 1990). Kilkenny Gold NL 
explored the northern Woodline Formation for gold and 
base metals during the 1990s (Kilkenny Gold NL, 1997).

Stratabound sedimentary — 
clastic-hosted mineralization

Energy mineral — uranium

Exploration for fossil placer-type uranium or gold (or 
both) in the Proterozoic Woodline Formation was carried 
out from 1969 to 1971 by Asarco Limited (1971) based 
on geological mapping, rock-chip sampling, radioactivity 
surveys, SP logging, and RC and diamond drilling, but no 
signifi cant radioactivity was reported. Core from diamond 
drillholes DDH1 and DDH2 are stored at GSWA’s 
Kalgoorlie Core Library. 

Sedimentary — basin 
mineralization

Energy mineral — lignite

Brown coal or lignite of Eocene age is observed within 
deposits of the Eucla Basin and the drainage channel 
deposits overlying the crystalline rocks of the Albany–
Fraser Orogen and the southeastern part of the Yilgarn 
Craton (Le Blanc Smith, 1990). Lignite typically forms a 
single seam up to 12 m thick within siltstone and claystone 
of the Lower Werrillup Formation (Cowan Palaeochannel) 
and the Pindinga Formation (Lefroy Palaeochannel), 
which have been recently grouped into the North Royal 
Formation (Clarke et al., 2003). 

Exploration drilling by CRA Exploration Pty Ltd 
during the 1980s, in the southeastern part of YARDILLA 
and on YARDINA, delineated limited resources in small 
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isolated basins within a wider north-striking Cainozoic 
palaeochannel system (CRA Exploration Proprietary 
Limited , 1982). An overall resource of 30 Mt of lignite 
and 115 Mt of low-yield material was estimated, but the 
resources were downgraded after RC drilling because the 
lignite had high ash, salt, and sulfur contents, and the seam 
thickness and quality were too variable.

Undivided mineralization

Construction material — dimension 
stone

About 4840 t of dimension stone has been quarried from 
metamorphic rocks of the Albany–Fraser Orogen since 
1991 by Fraser Range Granite NL. Various types of 
dimension stone have been identifi ed, including epidote–
pyroxene–magnetite augen gneiss (known as ‘Verde 
Austral’), microgabbro (‘Gold Leaf Black’), intercalated 
garnet–pyroxene augen gneiss and foliated pyroxene 
granulite (‘Fantasia’), garnetiferous gneissic granite 
(‘Garnet Ice’), and fi ne-grained gabbro (‘Fraser Range 
Black’). The ‘Verde Austral’ type has proven reserves in 
excess of 1 million m3 (Maritana Gold NL, 1991)

Hydrogeology
Kern (1996) discussed the hydrogeology of WIDGIEMOOLTHA 
(1:250 000; including YARDILLA). Most of the groundwater 
on YARDILLA is saline to hypersaline with limited low-
salinity groundwater in upland areas of granitic rocks 
and metamorphic rocks of the Fraser Range. Fresh water 
for pastoralists is almost entirely derived from surface 
3

waters, with most dams along drainages and alluvial 
flats, and to a lesser extent from contour dams and 
rock walls. Kern (1996) identifi ed the most prospective 
aquifers on WIDGIEMOOLTHA (1:250 000) as the Cainozoic 
sandstone, carbonate, and spongolite units in the large 
palaeochannels. WMC Ltd drilled a single RC drillhole 
through the Woodline Formation during a nickel–gold 
exploration program between 1989 and 1991, with the aim 
of assessing the groundwater potential of the area (WMC 
Limited, 1991).
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Geology of the Yardilla 1:100 000 sheet

EXPLANATORY NOTES
The Y 1:100 000 map sheet covers the southeastern corner of the
W 1:250 000 sheet, in the southeastern Eastern Goldfields
Granite–Greenstone Terrane. The area is on the margin of the Yilgarn Craton and
includes part of the Albany–Fraser Orogen. Most of the map area comprises
Archaean metasedimentary, metavolcanic, and intrusive rocks.
Proterozoic granulite- to amphibolite-facies gneisses form
the Fraser Range in the southeast corner, and the
Proterozoic Woodline Formation overlies the
Archaean rocks in a northeast-trending belt
on northwest . Structural trends on

differ markedly from the regional
structural grain of the Eastern Goldfields
Granite–Greenstone Terrane and reflect the
effects of the Mesoproterozoic Albany–Fraser
Orogen. The Yardilla area has produced dimension
stone and been explored for gold, base metals,
uranium, diamond, and lignite.
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These Explanatory Notes are published in digital
format (PDF) and are available online at:
www.doir.wa.gov.au/gswa/onlinepublications.
Laser-printed copies can be ordered from the
Information Centre for the cost of printing and
binding.

Further details of geological publications and maps produced by the
Geological Survey of Western Australia are available from:

Information Centre
Department of Industry and Resources
100 Plain Street
East Perth, WA 6004
Phone: (08) 9222 3459   Fax: (08) 9222 3444

www.doir.wa.gov.au/gswa/onlinepublications
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