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1. Executive summary 
The Government of Western Australia has developed a renewable hydrogen strategy with the vision that 

Western Australia will become a significant producer, exporter and user of renewable hydrogen. Western 

Australia has outstanding potential for renewable energy, with an abundance of sun, wind and space. The 

Western Australian Renewable Hydrogen Roadmap (November 2020) includes the evaluation of utilising 

depleted oil and gas fields for hydrogen storage. A key aspect is the ability to store the hydrogen on a 

transitory basis and to be able to recover the hydrogen in high concentrations. 

The Western Australian Department of Mines, Industry Regulation and Safety (‘DMIRS’) commissioned RISC 

to conduct a literature review of hydrogen storage and scoping study of storage potential of depleted oil 

and gas fields in Western Australia (‘WA’), along with a high-level literature review of other examples of 

underground hydrogen storage such as aquifers, salt caverns, underground mine sites and tunnels. RISC 

notes that there are alternative options for storing hydrogen on a transitory basis, such as surface and 

chemical methods, which are not included in the scope of this review.  

The global subsurface hydrogen storage industry is at an embryonic stage. The subsurface storage of 

hydrogen is currently limited to a handful of caverns manufactured by dissolving the salt by pumping water. 

There are currently no depleted oil or gas fields used to store pure hydrogen, although there are examples 

of storage of ‘town gas’ or ‘synthetic gas’ with hydrogen concentration in the range of 20% to 60%. 

Similarly, there are no examples of aquifers, underground mine sites or tunnels currently used for hydrogen 

storage. 

In spite of the infancy of the industry, there are many published articles related to hydrogen as it is seen 

that it will become a major enabler for companies and countries to reach their net zero greenhouse gas 

(‘GHG’) emission aspirations and targets. The literature covers how the hydrogen industry is developing, 

progress and aspirations of various countries, what subsurface sites are being considered, technical 

challenges and risks of the various options and alternates to subsurface storage (surface and chemical). 

There is very limited information directly related to the potential of depleted oil and gas fields in WA. 

Salt caverns are the most robust means of storing hydrogen and have been proven to work. Salt acts as an 

excellent seal, the caverns size can be customised to operational requirements, they have a relatively high 

gas recovery and injection/production cycle time in the order of days/weeks. The draw-back is the limited 

locations of suitable salt, the need to access to large amounts of water in their manufacture and the need to 

dispose of the generated brine.  

Storing hydrogen in porous media (depleted gas and oil fields or aquifers) presents several challenges and 

remains largely unproven. The physical behaviors and properties of hydrogen are different to natural gas. 

Hydrogen is more chemically reactive which may affect the reservoir lithology, flow behaviour and seal 

capacity. Hydrogen is also an energy source for subsurface microbial processes which can turn the hydrogen 

into hydrogen sulphide or react with CO2 to form methane. In addition, the size of the site is fixed and 

cannot be customised to operational requirements and injection/production cycle times are typically the 

order of months rather than days. 

Figure 1-1 shows some of many renewable energy sites being considered in WA, many of which have the 

intent to produce hydrogen. The largest ones are the Western Green Energy Hub (‘WGEH’) and the Asian 

Renewable Hub (‘AREH’) which are world scale. The WGEH is located in the south-east of Western Australia 

with the aspiration to generate up to 50 GW of solar and wind power over 15,000 km2.  
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Figure 1-1: Location of WA renewable energy projects and potential hydrogen storage sites  

 

The AREH project is proposed to be located in the East Pilbara region of WA and aspires to generate 26 GW 

of wind and solar generation, with up to 23 GW of generation for the production of hydrogen and ammonia. 

The proposed project will cover an area of 6,500 km2 and cost an estimated $36 billion.  

There are also several sites being considered along the West Coast of WA, which are closer to infrastructure 

and with the potential of proceeding in the shorter term. It is likely that only modest volumes of renewable 
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sourced hydrogen will be required to be stored on a transitory basis in WA for the foreseeable future, and 

this has some bearing on the ideal storage method.  

Non-renewable energy sourced hydrogen may add to the shorter-term storage requirements but are 

considered unlikely to alter the long-term requirements. This literature review and underground storage 

analysis is applicable to all hydrogen irrespective of its generation and source. 

RISC has screened twenty-three onshore depleted gas and oil fields in WA for suitability to meet the storage 

need of renewable hydrogen and have identified seven fields as good candidates for hydrogen storage 

projects along the West Coast. RISC’s mapping of renewable hubs relative to the subsurface sites shows that 

there is ample depleted oil/gas field storage capacity in the Perth Basin. However, the WGEH and the Asian 

Renewable Energy Hub are located over 1,000 km away from suitable depleted fields. 

A more encouraging method of underground storage for the AREH project is subsurface salt. However, the 

Canning Basin which contains the thickest known salt deposits in Australia is distant (approximately 200 

km). Unfortunately, no salt deposits have been mapped that are adjacent to the WGEH, although the Officer 

Basin 300 km north is reported to contain salt deposits. 

RISC recommends that surface options are also considered as these may provide more effective solutions 

for renewable hydrogen storage in WA given the location of the renewable hubs relative to the subsurface 

sites and technical and environmental challenges.   
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2. Terms of reference 
The Government of Western Australia, Department of Mines, Industry Regulation and Safety (‘DMIRS’) 

commissioned RISC Advisory Pty Ltd (‘RISC’) to conduct a literature review and scoping study of hydrogen 

storage in depleted oil and gas fields in Western Australia (‘WA’) in the context of: 

 The Government of WA has developed a renewable hydrogen strategy with the vision that WA will 

become a significant producer, exporter and user of renewable hydrogen. 

 To achieve this vision, industry and markets need to be developed to enable the production, storage, 

export and use of renewable hydrogen.  

 The Western Australian Renewable Hydrogen Roadmap (published in November 2020) includes the 

evaluation of utilising depleted oil and gas fields for hydrogen storage, with the first step being this 

review. 

The agreed scope for the literature review was: 

a. Comprehensive review of existing literature and status of research and technology of storing 

hydrogen in depleted hydrocarbon fields including identification of potential risks to storage of 

hydrogen. 

b. High level review of literature of other examples of underground geological storage of hydrogen such 

as aquifer traps, salt caverns, underground mine sites and tunnels. 

c. Commentary on the issues relating to creation of salt caverns across WA for hydrogen storage. 

d. Discuss advantages and disadvantages and recommendations of various geological storage options. 

e. The above to be carried out in consultation with key researchers on previous and ongoing work in the 

area of underground hydrogen storage, e.g. Geoscience Australia, CSIRO, Future Fuels CRC, as well as 

relevant companies involved in development of hydrogen energy. 

Further discussion with DMIRS confirmed that: 

 The review should also cover the potential to store hydrogen in salt caverns.  

 The review will only cover storage requirement for renewable (green) hydrogen and not hydrogen 

produced from hydrocarbons where resultant CO2 is released to the atmosphere (grey) or stored 

underground (blue). However, it is recognised that there may be a requirement for storage of grey and 

blue hydrogen. 

 The aim would be to store the hydrogen on transitory basis and to be able to recover the hydrogen in 

high concentrations, rather than inject in low concentrations into hydrocarbon gas streams. 

RISC also notes that there are alternative options for storing hydrogen on a transitory basis, such as surface 

and chemical methods. These would provide a useful comparison but are not included in the scope of this 

review.  

A detailed bibliography as a result of the literature search is included as Appendix B – Bibliography. 

As part of the study, RISC convened a virtual online workshop on 21 July 2021 with participants from CSIRO, 

Geoscience Australia, DMIRS, University of Edinburgh, Adelaide University, RAG and UEST in Austria. Details 

of attendees, agenda and presentations is included in Appendix C – Workshop presentation materials. The 

latest understanding of hydrogen storage from the workshop are integrated into our reported findings.  
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The agreed scope for the modelling scoping study was: 

a. Review of the adequacy of available geoscience and engineering data (including geomechanical data) 

for model(s) development in a subsequent Stage 2. 

b. Preliminary estimation of the storage capacity within all depleted fields based on hydrocarbons 

produced. 

c. Review of depleted fields in the onshore northern Perth Basin and onshore Southern Carnarvon Basin 

within Western Australia to provide a seriatim of the fields to be modelled with respect to storage 

capacity and risks to storage.  

d. Review of high-level risks and uncertainties and impacts on safe storage of hydrogen in onshore Perth 

Basin and Southern Carnarvon Basin depleted fields for consideration as part of the Stage 2 

modelling. 

e. Develop project specifications including high level work requirements, tasks and timelines for a Stage 

2 modelling project. 

The data and information used in the preparation of this report were primarily sourced from public domain 

information supplemented by data provided by DMIRS. RISC understands that the report will be made 

available to the public.  
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3. Literature database 
There is no shortage of literature related to hydrogen storage. RISC’s comprehensive literature search has 

identified over 300 relevant articles and papers (Figure 3-1). It is also relevant to point out that research 

into, and as a result the published literature, hydrogen generation and storage requirements is accelerating 

and becoming more significant. 

 

 

Figure 3-1: Hydrogen storage related articles 

 

RISC has reviewed a subset of the available literature bearing some relevance to this study (Figure 3-2), 

although there is little literature directly related to hydrogen storage potential of depleted oil and gas fields 

worldwide, let alone in WA.  

The global hydrogen industry (generation and use) in addition to its storage requirements is at an 

embryonic stage. However, this review provided useful context on how the hydrogen industry is developing. 

Aspirations and achievements of various countries (Germany, France, Denmark, Spain, UK, Canada and US) 

of what subsurface storage sites are being considered globally in addition to alternatives to subsurface 

storage (surface and chemical) have been reviewed.  

A detailed bibliography of reference material is included as Appendix B – Bibliography. 
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Figure 3-2: Hydrogen articles reviewed by RISC 
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4. Hydrogen subsurface storage overview 

4.1. Characteristics 

The focus of this review is on transitory storage of hydrogen generated primarily from renewable energy 

sources, which ideally satisfies the following criteria: 

 Safety: Hydrogen is a highly flamable product and needs to be stored safely. Figure 4-1 shows that a wide 

range of hydrogen - air mixtures are explosive compared to other fuels.  

 Environment: A key driver for renewable energy is to protect the environment by reducing greenhouse 

gas emmisions, primarily CO2 emmisions. Any storage solution however needs to meet all envronmental 

requirements, including land-use and pollutants. 

 High recovery: A major barrier to hydrogen production is cost. Any storage solution needs to be able to 

contain the hydrogen effectively and efficiently recover the stored hydrogen. 

 Technical challenges: Ideally, the storage concept will be a proven solution and technical issues are 

addressed and/or minimised. 

 Minimal contamination: The (stored and) recovered hydrogen should have minimal contamination (or 

dilution) due to the storage and recovery process. 

 Cycle time: The cycle time of storing and recovering the hydrogen needs to be matched to business needs 

of the renewable energy sourced hydrogent plant. RISC expect this to be measured in weeks or months. 

 

 

Figure 4-1: Ignition ranges of fuels with air 1 

 

 

                                                           
1  Shell hydrogen study; Energy of the future?, 2017. 
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The Australia National Hydrogen Roadmap2 sets underground storage in context with alternate mature 

hydrogen storage technologies (Table 4-1). 

 

Table 4-1: Mature hydrogen storage technologies 2 

 

4.2. Predicted hydrogen production and demand for storage 

Underground hydrogen storage is in its infancy, but the characteristics will be similar to the storage of 

natural gas, which is routinely used in the US, Europe and Australia to modulate seasonal heating demand, 

back-up power generation and reduce dependency on imports. The temporal nature of generation of 

renewable energy adds to the need for transitory storage of hydrogen.  

                                                           
2 National Hydrogen Roadmap, CSIRO, 2018. 
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The predicted global hydrogen production provided in the literature generally does not distinguish between 

renewable (green) hydrogen, hydrogen produced from hydrocarbons where resultant CO2 is released to the 

atmosphere (grey) or stored underground (blue). RISC expect the ‘green’ hydrogen to be a moderate 

proportion, so we need to bear this in mind when placing the WA renewable hydrogen storage demand in 

context.  

The expected demand for large scale storage of hydrogen in Europe was presented at the United Nations 

Framework Classification (‘UNFC’) resource management week in April 2021 and is summarised in Table 4-2. 

These forecasts assume that the storage requirement is 10-20% of annual production, consistent with 2019 

natural gas storage utilisation. The estimated storage figures are significant, with the study predicting up to 

5 Tcf of hydrogen storage is required in Europe by 2050.  

The UNFC presentation does not however provide the basis or background to the estimates and RISC expect 

that there will be included a significant proportion of ‘blue’ or ‘grey’ hydrogen. In any event, we can expect 

significant development of hydrogen subsurface storage knowledge and capabilities in the coming years.  

 

Table 4-2: Expected European demand for large scale hydrogen storage 3 

Resource 

Natural Gas Hydrogen 

Demand 

(Bcm) 

Storage 

(Bcm) 
Percentage 

Demand 

(TWh) 

Assumed 

Storage 

Storage 

requirement 

(Bcm) 

Global 2019 3,986 483 12%    

Europe 2019 470 105 22%    

Europe 2030    481 - 665 10 - 20% 16 - 44 

Europe 2050    780 - 2,251 10 - 20% 26 - 150 

Notes to the table:  
1 Bcm = 35.31 Bcf 

 

                                                           
3 Resource Management Week - Application of UNFC injection projects, April 2021. 
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5. Subsurface systems 

5.1. Introduction 

There are two basic underground storage systems suitable for hydrogen; salt caverns or in porous media 

(subsurface reservoir). Salt caverns are manufactured by pumping water into the salt body to create a 

cavern, while porous media may be either depleted gas and oil fields or aquifer traps (Figure 5 1). Each 

system has its own characteristics when compared to transitory storage criteria.  

 

Figure 5-1: Schematic underground storage systems 4 

 

RISC’s high-level assessment of the different storage systems against the storage criteria is given in Table 

5-1.  

Salt caverns are considered the best technical solution. They are a proven concept in underground storage, 

with a demonstrated safety record and fast cyclic storage. Salt acts an excellent seal making them effective 

and safe and the caverns themselves can be designed to fit the storage requirements. There are also no 

other residual native gases or hydrocarbons to mix with and potentially contaminate the stored hydrogen. 

The main issue is the distance of suitable salt from renewable energy sites. Water supply and resultant brine 

disposal are issues, particularly in WA where there is typically a shortage of water and limited means of 

brine disposal other than subsurface injection.  

All porous media systems carry uncertainties and risks due to the inherent technical complexity. The 

technical viability is still to be proven and long lead times (10 - 15 years) are expected for demonstration 

and development.   

                                                           
4 Underground hydrogen storage: characteristics and prospects, Radoslaw Tarkowski, 2019. 
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Table 5-1: Subsurface storage systems characteristics 

Criteria Salt caverns Aquifer Traps Depleted gas field Depleted oil field 

Safety Good Fair Fair Fair 

Environment Moderate/poor Fair Fair Fair 

Recovery  Good Site dependent Site dependent Site dependent 

Technical challenges Low High High High 

Contamination Excellent Good Moderate Poor 

Cycle time Excellent Site dependent Site dependent Site dependent 

Location Site dependent Site dependent Site dependent Site dependent 

Experience/risk Moderate Poor Poor Poor 

 

There are only a handful of hydrogen subsurface sites currently in operation worldwide (Table 5-2). Of 

these, only four are used to store hydrogen in high concentrations, all of which are in salt caverns. The 

storage volumes are quite modest relative to the capacity of oil and gas fields, except for the Benyes field in 

France which is used to store synthetic ‘town’ gas which consists of a mixture of hydrogen, methane and 

carbon monoxide. 

 

Table 5-2: Current hydrogen subsurface storage sites 

Country Field Storage type 
Depth 

(m) 

Pressure 

(Bar) 
H2 % 

Volume 

(MMscf) 

USA Spindletop Salt cavern 1340 Confidential 95 31.8 

USA Clemens Dome Salt cavern 800 70-135 95 20.4 

USA Moss Bluff Salt cavern 800 55-152 
 

19.9 

UK Teeside Salt cavern 350-400 45-50 95 7.4 

France Beynes Aquifer trap 
 

 50 11,583 

Germany Keil Salt cavern 
 

80-100 60 1.1 

Germany Ketzin Aquifer trap 
 

 62 
 

Czech Republic Lobodice Aquifer trap 
 

90 50 
 

Argentina 
Diadema 

(HyChico?) 

Depleted gas 

reservoir  
10 10 

 

Austria 
Underground Sun 

Storage (RAG) 

Depleted gas 

reservoir  
78 10 

 
Notes to the table:  

1 MMscf = 0.001 Bcf 
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The details of the four hydrogen storage salt caverns in the world are provided in Figure 5-2. 

 

 

Figure 5-2: The 4 hydrogen storage salt caverns in the world 5 

 

A number of additional sites worldwide are being considered to store hydrogen (Figure 5-3). The majority of 

which are in salt (classified as salt caverns in Europe and salt domes in the US), but with a number in aquifer 

traps and depleted gas and/or oil fields. There is no information on the expected concentration of hydrogen 

in these sites.  

Some of the global pilot & demonstration underground hydrogen storage projects underway are: 

 RAG – SunStorage (Austria – gas field) 

 HyChico (Argentina – gas field) 

 Energystock - HyStock (Netherlands – salt cavern) 

 Storengy - HyPster (France – salt cavern) 

 

                                                           
5 Storengy: European Workshop on Underground Energy Storage, November 2019. 
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Figure 5-3: Hydrogen sites under consideration 6 

 

There are also several subsurface mapping, characterisation & screening projects underway worldwide: 

 Various national appraisal and feasibility studies 

 H2020 – HyUnder (potential/actors/business cases for large scale underground hydrogen storage in 

Europe) 

 H2020 – ESTMAP (European Energy Storage Mapping and Planning) 

 H2020 – HyStorIES (Underground storage of renewable hydrogen in depleted gas fields and other 

geological stores) 

 Horizon-Europe call – CSA Geological Services for Europe > EU database and atlas for underground 

storage (CCS/Heat/Energy) 

The DMIRS initiative is aligned with these ongoing global developments. RISC have not found any literature 

regarding storage of hydrogen in underground mine shafts or tunnels. RISC estimate that these would be 

less attractive options to salt or depleted fields due to retention issues and the risk of leakage, unless they 

are located within a salt body. 

5.2. Salt caverns 

Salt caverns are created through the process of solution of the salt with pumped water (Figure 5-4). This 

process requires an abundant water supply, and the subsequent brine needs to be disposed of safely and in 

an environmentally acceptable manner. The hydrogen is then injected and stored under pressure and then 

recovered by releasing the pressure within an operational pressure range. Operationally, the caverns are 

efficient as the size can be customised to the operational requirements, they have a relatively high recovery 

and an injection/production cycle time in the order of days to weeks. The salt also acts as an excellent seal 

and any fractures or cracks will anneal or seal over time due to the relative mobility of the salt.  

Salt caverns are routinely used throughout the world to store hydrocarbon gas, liquids and LPG. A map of 

these sites throughout Europe is shown in Figure 5-5.  

                                                           
6 Data compiled from ‘Underground hydrogen storage: A comprehensive review, Davood Zivar et. al. March 2020’ 
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Figure 5-4: Steps in salt cavern creation 7 

 

 

Figure 5-5: Salt deposits and caverns in Europe 7 

 

                                                           
7 Storengy: European Workshop on Underground Energy Storage, November 2019. 
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An underground storage database8 captures over 140 salt caverns across 17 countries that store 

hydrocarbon gas, with volumes ranging from less than 0.2 Bcf to over 200 Bcf (Figure 5-6).  

 

 

Figure 5-6: Global salt cavern gas storage sites 8 

 

The key challenges for storage of hydrogen in salt caverns are: 

 As in depleted oil and gas fields, microbial activity is a potential issue in salt, that can result in souring of 

the stored gas with H2S.  

 Water supply and brine disposal may be challenging. This is particularly true in the generally arid areas of 

WA. However, deeper limited salinity aquifers are likely to be available. 

 The creation of salt caverns will require the drilling of several wells and take many months. 

 Suitable salt formations may not be adjacent to the desired hydrogen storage location and require 

additional pipelines and compression for hydrogen transport. 

 Shallow salt caverns can cause geomechanical issues such as overburden collapse and minor earthquakes. 

Salt caverns created for gas storage would be deeper to allow higher pressure and greater storage 

volume and thereby should avoid such issues. 

5.3. Porous media 

5.3.1. Introduction 

The storage of hydrogen in porous media is potentially more complex than hydrocarbon gases or CO2. Town 

gas (or coal gas) has been stored in large scale underground storage and is a mixture of approximately 50% 

hydrogen, 25% methane, 14% carbon monoxide and smaller components of other gases. There are no 

examples of storing pure (95%+) hydrogen in porous media, although a gas storage company in Austria (RAG 

Austria) is planning to start a pure hydrogen storage trial shortly.  

                                                           
8 IGU: Underground Gas Storage Database for the WGC 2022. 
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The physical behavior and properties of hydrogen are significantly different to natural gas. It has a lower 

density and so higher storage pressures are required to store the same mass. The low density also makes 

hydrogen four times more diffusive than methane, making it more susceptible to leakage. Hydrogen is also 

more chemically reactive and can interact with clay minerals or other reservoir and caprock minerals, which 

may in turn affect aspects of reservoir quality such as porosity or permeability.  

Hydrogen is also an energy source for subsurface microbial processes, such as methanogenesis, sulfate 

reduction, and acetogenesis, and have been shown to occur at temperatures up to 90 °C and in low to 

medium water salinities. Hydrogen can also react with CO2 to form methane. These mechanisms were 

identified as concerns at a site in Lobodice, Czech Republic, where approximately half of the hydrogen in 

stored town gas (45 - 60% H2) was transformed into methane or hydrogen sulfide through microbial activity. 

These impact the hydrogen storage cycle from site selection to storage site operation and a multidisciplinary 

approach, including reservoir engineering, chemistry, geology and microbiology, is required to implement 

safe, efficient storage. 

The key uncertainties with storing hydrogen in porous media are illustrated in Figure 5-7. Storage in 

depleted gas and oil fields will have the additional complication of remaining oil and gas which may interact 

with and contaminate the hydrogen.  

 

 

Figure 5-7: Uncertainties of hydrocarbon storage in porous media 9 

 

                                                           
9 Enabling large-scale hydrogen storage in porous media, Niklas Heinmann et. al. Energy Envirn. Sci, 2021. 
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Other issues to consider are the appropriate size of the structure and cycle time. Our research indicates that 

depleted oil and gas fields are larger than the expected volumes of hydrogen to be stored, suggesting that 

recovery efficiency will be low i.e. significant volumes of the hydrogen will be required as cushion gas10. 

There is considerable experience in transitory storage of hydrocarbon gas in porous media and cycles times 

are in the order of 1-2 storage cycles per year, due to permeability and size of the structures.  

5.3.2. Issues relating to hydrogen storage in depleted oil and gas fields 

A number of reactions may occur when hydrogen gas is injected into depleted oil and gas fields which may 

reduce the proportion of hydrogen that can be re-produced and cause potential contamination of the re-

produced hydrogen: 

 Hydrogen being highly reactive may react with the cap-rock and reduce reservoir seal capacity. Often not 

a risk but depends upon kerogen content and competency of the cap-rock. 

 Hydrogen may also react with the reservoir formation and not be recoverable. Analysis undertaken to 

date11 indicate this is a low risk. 

 Microbial action may sour the stored hydrogen with H2S. Elevated temperatures (>90 °C) and elevated 

water salinity (>4 moles NaCl per kg of water) is shown to prevent microbial action11. The risk and degree 

of microbial action below these limits is unknown and requires further evaluation.  

 Hydrogen reacts with CO2 to form methane. 

 Hydrogen will mix with any gas remaining in the gas reservoir and the re-produced gas will be a mixture 

of hydrocarbon gas and hydrogen. The degree of mixing is an uncertainty, but initial data suggest limited 

mixing of hydrogen with natural gas by managing the rate and location of hydrogen injection. 

 Hydrogen will dissolve in formation water in the reservoir and may not be recoverable. However, the 

solubility of hydrogen in water is estimated to be minor. Note the re-produced hydrogen will be wet and 

require drying. 

 Hydrogen will dissolve in oil remaining in an oil reservoir and may not be recoverable. This volume can be 

significant. 

 Hydrogen can be lost as residual gas in depleted gas reservoir with aquifer drive and in aquifer traps. 

Greater hydrogen losses are likely in depleted oil fields compared to depleted gas fields due to the solubility 

of hydrogen in the oil and hydrogen forming unrecoverable residual gas in oil fields. Therefore, depleted oil 

fields are only likely to be of interest for storage if depleted gas fields are not available. 

5.3.2.1. Solubility of hydrogen in water and oil 

The solubility of hydrogen in water increases with temperature and pressure but reduces in more saline 

water (Figure 5-8). 

At typical reservoir conditions of 70 bara and 333 kelvin the solubility of hydrogen in fresh water is about 

0.001 mole fraction which is 111 mg/kg, reducing to 0.0007 mole fraction (78 mg/kg) in saline water with 1 

mole of NaCl per kg of water. Therefore, the solubility of hydrogen in water at reservoir conditions remains 

small. 

 

                                                           
10 Cushion gas, or base gas, is the volume of gas required in gas storage applications to maintain adequate reservoir 
pressure and conditions to ensure deliverability and operational requirements. 
11 Edinburgh University HystorPor project; https://eartharxiv.org/repository/view/1799/ 
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Figure 5-8: Solubility of hydrogen in water and brines 12 

 

Regular solution theory can be used to estimate the solubility of hydrogen in various hydrocarbons at 

different temperatures and pressures. The data solubility series13 shows the solubility of hydrogen in a 

benzene, cyclobenzene and hexane mixture at typical reservoir temperatures and pressures. At 93 °C and 

71.2 bara the dissolved hydrogen is 0.1% by weight or 1000 mg/kg which correlates to approximately 800 

mg per litre of oil. Each million barrels of oil remaining in the reservoir could therefore dissolve 130 tonnes 

of hydrogen, although this would depend upon the degree of mixing of hydrogen with the oil. Potential 

hydrogen losses through dissolution in oil reservoirs may therefore be significant.  

5.3.2.2. Residual trapped hydrogen 

In reservoirs with a water drive, aquifer water influxes into the reservoir as the hydrocarbons are produced. 

The imbibing water traps residual hydrocarbon that becomes immobile (trapped) and not produced. When 

gas (natural gas or hydrogen) is re-injected or stored in the reservoir, the influxed aquifer is pushed back to 

accommodate the gas. When this stored gas is reproduced, the aquifer influxes again and re-traps residual 

gas. Residual gas saturations are in the order of 25% of the pore volume where water encroaches. 

This does not affect natural gas storage in depleted gas fields as the residual gas trapped upon the re-

production of the stored gas is the same natural gas that was trapped on the initial field depletion. 

However, if hydrogen is stored, the trapped gas may be a mixture of native reservoir gas and hydrogen. 

Therefore, some hydrogen may be lost as residual gas.  

Hydrogen is a lighter gas and likely to remain at the top of the depleted gas reservoir. Therefore, the volume 

of hydrogen trapped by water may therefore be limited. Vertical segregation of hydrogen and native gas in 

the gas reservoir may also limit the contamination of re-produced hydrogen with natural gas. 

When water bearing traps (aquifers) are used for gas storage, the aquifer must be sufficiently mobile to be 

displaced to allow gas injection. The aquifer will re-influx when the hydrogen is reproduced, and some 

hydrogen will be therefore lost as residual gas. This can be a significant volume (25%) of hydrogen loss. The 

use of a less valuable gas such as nitrogen or CO2 as cushion gas followed by hydrogen injection is being 

considered. However, this introduces the risk of contamination of re-produced hydrogen with the cushion 

gas.  

                                                           
12 Measurements and predictive models of high-pressure H2 solubility in brine (H2O+NaCl) for Underground Hydrogen 

Storage application (1 Nov 2020). 
13 Solubility Data Series Volume 5/6 hydrogen and deuterium, International Union of Pure and Applied Chemistry. 
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If depleted oil fields are used for hydrogen storage, hydrogen may be lost as residual gas if the oil influxes 

back into the pore volume when hydrogen is re-produced. If the oil field has a gas cap and the gas cap is 

used for hydrogen storage this issue is partially alleviated. 

5.3.2.3. Contamination of hydrogen with natural gas 

A key concern with storing hydrogen in depleted natural gas fields is the mixing and contamination of pure 

hydrogen with natural gas. This may lead to hydrogen losses in the native and/or cushion gas in addition to 

a potential requirement for recovery and separation processes when the hydrogen is reproduced.  

Preliminary findings suggest that the degree of mixing may be limited if hydrogen injection is managed; 

namely: 

 Modelling indicates limited Boolean mixing occurs in the storage timeframes and re-produced gas is 

largely the injected gas. 

 RAG Austria’s experience storing 10% hydrogen in a natural gas storage reservoir is that mixing is limited 

and good hydrogen recovery occurs. 

 Hydrogen injection rates should be limited to avoid viscous fingering into the less mobile native 

hydrocarbon gas column. 

Selecting the appropriate field size for the volumes of hydrogen storage required should reduce mixing and 

hydrogen losses: 

 Additional cushion gas will be required in over-sized fields. 

 The volume of remaining hydrocarbon gas to stored hydrogen is minimised in appropriately sized fields. 

This should reduce potential mixing. 

The geological nature of the field will also affect hydrogen losses and potential mixing: 

 Steeply dipping structures with hydrogen injection at the crest may reduce mixing. 

 Permeable reservoir will allow hydrogen to be injected in the crest of the structure. If the crest of the 

field has poor quality reservoir, hydrogen may inject into the more permeable intervals, with gravity and 

buoyant forces causing mixing with native hydrocarbons. 

Specific field modelling is required to quantify potential hydrogen natural gas mixing. 

5.3.3. Aquifer traps 

To store and retrieve gas in a deep confined aquifer, there must be a trap in the traditional petroleum sense 

to retain the stored gas. As the trap is not known to contain hydrocarbons there is no proof that the trap is 

effective; i.e. that is sealing. Therefore, storing hydrogen gas in aquifer bearing traps carries the risk of 

retention and potential leakage.  

The use of shallow unconfined aquifers and potable water aquifers would not be environmentally 

acceptable nor technically feasible.  

Hydrogen loss as a residual gas has already been discussed and is applicable in aquifer traps. 
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6. Western Australia’s future hydrogen storage requirements 
There are numerous renewable energy projects with associated hydrogen generation currently being 

considered or evaluated in Western Australia (‘WA’). The largest being the Western Green Energy Hub 

(‘WGEH’) and the Asian Renewable Hub (‘AREH’), which are considered world scale.  

The WGEH would be located in the south-east of WA with the aspiration to generate up to 50 GW of solar 

and wind generation over an area of 15,000 km2. The AREH is under consideration by a consortium of 

energy companies (InterContinental Energy, CWP Global and Vestas) in the East Pilbara, with a plan for 

6,500 km2 in solar and wind generation and cost an estimated $36 billion. It aspires to 26 GW of wind and 

solar generation, with up to 23 GW of generation for production of green hydrogen and green ammonia.  

Hydrogen Renewables Australia (‘HRA’) is proposing to develop the Murchison Renewable Hydrogen project 

just north of Kalbarri, WA. It would aim to develop a combined wind and solar farm that will operate at 

5,000 MW and produce low-cost renewable hydrogen. The project is in the early stages, but HRA have 

undertaken preliminary discussions with key representatives of the WA and Commonwealth Governments, 

the local Northampton Shire Council, the local Nanda Aboriginal Corporation and several other key local 

stakeholders.  

ENGIE and YARA have also partnered to evaluate the Renewable Hydrogen and Ammonia Deployment 

(‘YURI’) plant that would produce renewable hydrogen near Karratha which in turn will be used to develop 

ammonia. YARA operates ammonia and fertiliser plants in the Pilbara region of WA and ENGIE is global 

leader in low carbon energy and services. The plant aspires to operate at up to 2 GW by 2030. While there 

will be no requirement to store the hydrogen in the subsurface, RISC have included it for context.  

RISC has estimated order of magnitude maximum possible hydrogen subsurface storage requirements for all 

the renewable energy projects known at the time of writing, which is shown in Figure 6-1.  

RISC acknowledge that the numbers are approximate and set an upper limit. RISC have assumed: 

 All of the stated target capacity would be used to generate hydrogen, whilst some will be used as a 

feedstock for ammonia.  

 The renewable energy plants will operate at 30 - 50% annual capacity, consistent with periodic supply of 

solar and wind power. 

 The storage capacity would be 30% of annual production (EU gas storage is 10-20% of annual 

production). 

While the WGEH and Asia Renewable Hub could require substantial volumes, the nearer term projects are 

considered to have a much more modest storage requirement. 

For reference, the estimated hydrogen demand in the United Kingdom is up to 22 TWh (Figure 6-2). 

Assuming this requires 30% storage the storage volumes is 6.6 TWh or 78 Bcf. This storage volume is 

considered consistent with the smaller, nearer term WA project or hub volumes. 
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Figure 6-1: Maximum hydrogen storage requirements for proposed WA renewable hubs 

 

 

 

Figure 6-2: UK renewable hydrocarbon demand 14 

 

 

                                                           
14 HyStorPor Industry Workshop Nov 2020 
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For WREH and AREH, RISC have scaled the costs for the most up to date stated target capacities for the 

project, noting the huge investments required (Figure 6-3). There are no similar numbers for United 

Kingdom storage estimates, in addition there are no costs publicly available. 

 

Figure 6-3: Maximum hydrogen storage requirements for Australia renewable projects 

 

The proposed projects in the Perth Basin and West Coast of WA are smaller hydrogen projects that are 

more likely to progress in a reasonable timeframe and require an estimated storage capacity of 5 to 50 Bcf, 

more in line with the USA and European sites (Figure 6-4). These projects are located close to existing 

infrastructure and depleted oil and gas fields which could be considered for transitory hydrogen storage. 

The Mega projects such as WGEH and AREH are remote and not favourably located with respect to depleted 

fields for storage and may be more difficult to progress due to the investment required. 

In either case the storage volumes required are substantially greater than a typical LNG storage tank 

capacity from the NWShelf and therefore underground storage is a more feasible option (refer Figure 6-4). 

In summary, RISC estimates that the demand for hydrogen storage in WA will be 5 to 50 Bcf and this storage 

would ideally be distributed across a number of locations adjacent to the various hydrogen projects. 

Individual site storage requirements are likely to be a few Bcf. Larger hydrogen storage sites (>10 Bcf) may 

be desirable if and when extensive hydrogen pipeline networks are established.  

Field size is a consideration when ranking depleted oil and gas field for hydrogen storage applicability. Fields 

with a storage capacity of a few Bcf have advantages over larger field in that the mixing of estimated 

hydrogen storage volumes with remaining gas will be reduced and cushion gas potentially required for 

hydrogen storage operations is reduced.  
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Figure 6-4: Existing hydrogen subsurface storage project capacities, and comparison to an LNG tank 
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7. Western Australia storage opportunities 

7.1. Depleted oil and gas fields 

In accordance with the scope of the project, RISC has reviewed several shut-in oil and gas fields in the 

onshore Perth and Carnarvon Basins, Western Australia, many of which are classified as depleted. In total, 

RISC considered 23 fields, with 21 of these fields located in the Perth Basin. Our screening identified several 

candidates, with the Dongara field dominating in terms of potential storage volume (Figure 7-1). 

 

 

Figure 7-1: Depleted oil and gas fields in WA with potential for hydrogen storage  

 

The fields were initially screened through a review of the WAPIMS open file data and documentation in 

addition to other public domain information where available.  This included: 

 Cumulative oil, gas and water production to June 2015. Field by field production data is available in the 

public domain (WAPIMS) up to 2015 but not available on a field-by-field basis post 2015. 

 Well completion reports. 

 Well test interpretations. 

 Petrophysical analysis, and 

 Western Australia Atlas of Petroleum Fields Onshore Perth Basin15. 

The initial review aimed to identify the fields which appeared to be promising hydrogen storage candidates 

and those which were not suitable. Production history was used to estimate storage capacity of fields 

against what RISC estimates the WA hydrogen storage requirements to be. In some cases, produced 

volumes were deemed insufficient for hydrogen storage and the field was therefore deemed not suitable 

                                                           
15 OWAD-JONES, D.L., and ELLIS, G.K., 2000, Western Australia atlas of petroleum fields, Onshore Perth Basin: Petroleum 
Division, DMEWA. Volume 1. 
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for further investigation. For example, the Evandra oil field which produced 1,900 bbl of liquid in total is not 

deemed suitable. 

For the calculation of the theoretical hydrogen storage capacity in each gas field, RISC has taken the total 

natural gas production volume as an approximate estimate. For the oil fields, the total oil production at 

standard conditions was converted to an approximate reservoir volume using oil formation volume factors, 

and this volume was converted to a hydrogen volume at standard conditions using gas formation volume 

factors.  

These produced hydrocarbon volumes are considered the maximum hydrogen storage volume without re-

filling the field to a greater extent than originally filled by hydrocarbons. A safety margin may have to be 

applied to ensure that hydrogen and/or hydrocarbons are not pushed below the original hydrocarbon water 

contact and confirmed trap. The degree of refill must also consider the maximum allowable pressure 

without fracturing the caprock. RISC also notes that the stated volumes are the total available volume, part 

of which may have to be used for cushion gas.  

For some fields, additional production occurred post-2015. However, this production data is not publicly 

available so the known production up to 2015 may be conservative. 

RISC also considered permeability and net reservoir thickness to be important reservoir properties for the 

evaluation of hydrogen storage potential. High permeability and net thickness will enable higher injection 

and withdrawal rates. 

Fields where further appraisal or development activities is planned, such as Walyering field, were 

considered not suitable for storage modelling as it is unclear when the field depletion will conclude and it 

will become available for potential storage. The Jingemia field was also considered not suitable as an 

exploration well is planned on the license in the near future, with one of the reservoir targets being main 

producing reservoir in Jingemia field.  

RISC has not considered commercial aspects, other than that highlighted below for the Tubridgi and 

Mondarra fields, access or title for its assessment and ranking of the fields. RISC also notes that at present 

there is currently no legislation to govern underground storage, including hydrogen, in WA. 

Following its assessment of the fields, RISC has ranked the fields for hydrogen storage potential. The ranking 

criteria were field availability, field productivity/injectivity and storage capacity. All depleted Perth Basin 

fields are well located with respect to the potential hydrogen production projects.  

 The Mondarra and Tubridgi fields are technically very strong storage candidates. However, their ranking 

have been downgraded due to the existing natural gas storage projects in place in these fields, thereby 

impacting their short-term availability. RISC notes that in time, this situation may change. 

 The Dongara field is the largest field evaluated by RISC with approximately 458 Bcf of gas produced. Such 

large hydrogen storage volumes are not forecast in the short to medium term so this field would not be 

an ideal short to medium-term candidate. RISC estimate pure hydrogen storage demand to be between 1 

and 10 Bcf (refer Section 6). Therefore, the Dongara field ranking has been downgraded. However, RISC 

notes that this situation may change in the longer term. 

 Oil fields have also been downgraded due to the added complexity and issues of hydrogen storage in oil 

fields as compared to natural gas fields. 

RISC’s field ranking is shown in Table 7-1. Further information on the identified candidates is detailed in 

sections 7.1.1 to 7.1.13, and in the Appendices. 
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Table 7-1: West Australia depleted oil and gas fields; ranked for hydrogen storage potential 

    Field Basin 
Storage 

(Bcf) 
H2 Storage 
Potential 

Ranking Reasoning/Risks 

Xyris gas field Perth 9.3 Strong 1 Good storage capacity, high quality reservoir 

Yardarino gas field Perth 5.1 Strong 2 Good storage capacity, high quality reservoir - less production than Xyris so lower storage potential 

Beharra Springs gas field Perth 89.0 Strong 3 Good storage capacity, high quality reservoir. Beharra Springs Deep under development 

Red Back gas field Perth 22.0 Strong 4 Good storage capacity, high quality reservoir. Beharra Springs Deep under development 

Tarantula gas field Perth 19.0 Strong 5 Good storage capacity, permeability low at 10-20mD 

Tubridgi gas field Carnarvon 69.0 Strong 6 
Good storage capacity. Currently used as natural gas storage facility (not currently available). 
Reasonable productivity 

Mondarra gas field Perth 23.9 Strong 7 
Good storage capacity. Currently used as natural gas storage facility (not currently available). High 
productivity 

Dongara gas field Perth 458.0 Moderate 8 
Very high storage capacity, potentially too large for H2 requirements. Good reservoir properties. 
Many (47) wells 

Red Gully gas field Perth 4.0 Moderate 9 Good storage capacity, high quality reservoir, wells watered out 

Apium gas field Perth 1.2 Moderate 10 
Sufficient gas production - permeability is very low (<5mD), reducing potential injection and 
withdrawal rates 

Gingin gas field Perth 1.7 Moderate 11 Sufficient gas production - varying properties across field, poor deliverability in production wells 

Hovea oil field Perth 3.4 Moderate 12 
Good storage capacity, high permeability - risk of potential H2 dissolution and contamination in/from 
oil 

Mt Horner oil field Perth 1.0 Moderate 13 
Limited storage capacity, high water saturation, - risk of potential H2 dissolution and contamination 
in/from oil 

Corybas gas field Perth 0.8 No N/A Low reservoir productivity (hydraulically fractured wells) 

Eremia gas field Perth 
 

No N/A In communication with Hovea (Hovea a stronger candidate) 

Evandra oil field Perth minor No N/A Produced volume too low (only 1900 bbl of oil + water produced) 

Gingin West gas field Perth minor No N/A Only 0.3 Bcf produced, in communication with Gingin which is a stronger candidate 

Walyering gas field Perth 0.3 No N/A Limited storage capacity. Appraisal well to be drilled by Stike Energy/Talon in CY21 

Woodada gas field Perth 52.9 No N/A Limited patchy permeability (<5mD) fractured carbonate. Some gas in tight zones. 14 of 17 wells. 

Xyris South gas field Perth 
 

No N/A In communication with Xyris which is considered a stronger candidate 

Jingemia oil field Perth 
 

No N/A Cervantes-1 to be drilled in CY21  on the permit. Dongara Sandstone could be in communication 

North Yardanogo oil field Perth minor No N/A Well encountered only 1m of pay with water cut rapidly increasing to 90% during DST. 

Rough Range oil field Carnarvon minor No N/A Only 0.3 MMbbl of oil+water produced, water cut 96% at EOFL. 
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7.1.1. Hovea oil field 

Hydrogen storage potential: Moderate 

7.1.1.1. Summary 

The Hovea oil field is located in the L 1 permit in the Perth Basin. It produced 7.4 MMstb of oil from the 

Dongara sandstone from late 2002 to 2006 before being shut-in. The estimated STOIIP was 10 to 15 

MMstb, giving a final oil recovery factor of approximately 50%. The Dongara sandstone at Hovea was 

estimated to be 50 m thick with a net to gross ratio of 90%. The average permeability was 600 mD. Many 

years of production from the depleted Dongara gas field 5 km to the north left the Hovea field depleted 

from the original reservoir pressure by approximately 750 psi, suggesting the fields are hydraulically 

connected. Significant water production shows a high degree of aquifer influx and pressure support. 

7.1.1.2. Positives for hydrogen storage 

Significant production has occurred from the field, leaving sufficient voidage for a storage project. Based 

on the reported oil production, a theoretical total hydrogen storage capacity of 3.4 Bcf is calculated, as 

summarised in Table 7-2. 

Table 7-2: Hovea Field production summary and hydrogen storage potential 

Fluid Volume 

Water production (MMstb) 33.5 

Oil production (MMstb) 7.4 

Oil production (MMrbbl) 8.1 

Reservoir volume (Brcf) 0.1 

Approximate hydrogen storage capacity (Bcf) 3.4 

 

Hydrogen injection and production rates would be high due to the good reservoir permeability, high net to 

gross and reasonable net pay thickness. RISC notes that majority of the existing wells have been plugged 

and abandoned (P&A), with the remaining wells suspended. The suspended wells could potentially be used 

for hydrogen injection and production.  

7.1.1.3. Negatives for hydrogen storage 

The estimated oil recovery factor from the Hovea field was approximately 50%, leaving a large volume of 

oil in the field. This could lead to contamination of injected hydrogen. Also hydrogen losses may occur 

through dissolution of hydrogen in oil.  

There is evidence of connection between the Hovea and Dongara fields, with 750 psi in depletion 

observed. This could lead to the loss of injected hydrogen, with the gas being more mobile than oil or 

hydrocarbon gas. However, the depletion is most likely the result of pressure communication through a 

regional aquifer, which would remove the risk of gas flowing to other reservoirs. 
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7.1.2. Mondarra gas field 

Hydrogen storage potential: Strong 

7.1.2.1. Summary 

The Mondarra gas field is located in the L 1 license in the Perth Basin. It produced 24 Bcf of gas and 0.06 

MMstb of condensate from the Dongara sandstone from 1972 to 1994 before being shut-in. The field is 

classified as depleted. The Mondarra field contains two structures, Mondarra 1 and Mondarra 2. The 

original gas in place estimate for the Mondarra 1 structure is 25.7 Bcf with gas production of 22.3 Bcf. 

Production from the Mondarra 2 structure is 1.6 Bcf, however gas original in place estimates are not 

available. Permeability in the Mondarra 1 structure is 127mD with a gross pay interval of 40m and a NTG of 

85%. 

7.1.2.2. Positives for hydrogen storage 

Based on the reported gas production, a theoretical total hydrogen storage capacity of 24 Bcf is calculated, 

as summarised in Table 7-3. 

Table 7-3: Mondarra Field production summary and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.06 

Water production (MMstb) 0.06 

Gas production (Bcf) 23.9 

Approximate hydrogen storage capacity (Bcf) 23.9 

Mondarra is currently operated as a gas storage facility by APA Group, with three wells utilised as both 

injectors and producers. As per APA publications, the natural gas storage capacity is 15 PJ, with injection 

and withdrawal capabilities of 70 TJ/d and 150 TJ/d respectively. Existing wells and infrastructure currently 

used to inject and withdraw natural gas could be used for hydrogen injection and withdrawal. 

7.1.2.3. Negatives for hydrogen storage 

Mondarra has been proven as a natural gas storage facility, RISC therefore considers the field a very strong 

candidate for hydrogen storage. The main concern is that the field is currently being used for gas storage in 

the Parmelia gas pipeline. There would have to be a strong business case to convert the storage to pure 

hydrogen.   

Gas samples from the Mondarra-1 drill stem test indicated 4.1% CO2. Stored sales specification gas is likely 

to have reduced the CO2 content. However, residual gas in the reservoir may contain a similar 

concentration of CO2. Hydrogen will react with CO2 to form methane, resulting in some loss of the injected 

hydrogen. 

7.1.3. Beharra Springs gas field 

Hydrogen storage potential: Strong 

7.1.3.1. Summary 

The Beharra Springs gas field is located in the L 11 license in the Perth Basin. It has been developed through 

the 25 TJ/d Beharra Springs gas plant with adjacent gas fields Redback and Tarantula. It produced 89 Bcf of 
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gas and 0.2 MMstb of condensate from the Wagina Sandstone from 1992 to 2015. Further production has 

occurred since 2015 but declined to minor current levels. Four wells have been drilled and completed on 

the Wagina Sandstone. Beharra Springs 3 tested gas at 26 MMscf/d with an estimated maximum flow 

potential (AOF) of 100 MMscf/d and 500 mD permeability. Beharra Springs 1 and 2 tested gas at 78 and 67 

MMscf/d. 

Gas was discovered in the Kingia Formation of the Beharra Springs Deep well in 2019 and this is planned to 

be developed through the Beharra Springs gas plant.  

7.1.3.2. Positives for hydrogen storage 

Good hydrogen storage capacity consistent with estimated storage needs. Based on the reported gas 

production, a theoretical total hydrogen storage capacity of 89 Bcf is calculated, as summarised in Table 

7-4. 

Table 7-4: Beharra Springs Field production history to June 2015 and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.2 up to 2015 

Water production (MMstb) 0.6 up to 2015 

Gas production (Bcf) 89 up to 2015 

Approximate hydrogen storage capacity (Bcf) 89 

The Wagina Formation was divided into an upper and lower zone which are in hydraulic communication 

with a common GWC16. The upper zone has 10 to 11% porosity in wells 1, 2 and 3 and the lower zone 4 to 

6% porosity. Better reservoir in the upper zone may assist keeping injected hydrogen at the crest of the 

field. Some aquifer influx and water production is expected. 

High gas rates were historically achieved, indicating good injection and production capacity for hydrogen 

storage. RISC therefore considers Beharra Springs Wagina reservoir a strong candidate for the modelling 

stage. It may be possible to use some of the existing production wells although a new processing facility 

would be required. 

7.1.3.3. Negatives for hydrogen storage 

In this limited review, no issues have been identified in using Beharra Springs for hydrogen storage. The 

size of the field may be larger than required that can result in increased hydrogen losses and increased 

contamination with remaining hydrocarbon gas 

7.1.4. Redback gas field 

Hydrogen storage potential: Strong 

7.1.4.1. Summary 

The Redback gas field is located in the L 11 license in the Perth Basin. It has been developed through the 25 

TJ/d Beharra Springs gas plant with adjacent gas fields Beharra Springs and Tarantula. It produced 22 Bcf of 

gas and negligible condensate from the Wagina Sandstone from 1992 to 2015 with a maximum monthly 

                                                           
16 EP320 Beharra Springs Fields Simulation Study (July 1993) 
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rate of 15 MMscf/d from 2 wells. Further production has occurred since 2015 but declined to minor 

current levels.  

Two well have been drilled and completed on the Wagina Sandstone. Redback-1 was plugged and 

suspended without testing and interpreted as tight with less than 5% porosity with some fracturing at the 

top. Redback-2 found 14.3m net pay in the Wagina Sandstone and tested at 5.3 MMscf/d and subsequently 

used for production. 

Redback South-1 tested a second gas accumulation in 2010 at 38 MMscf/d and has subsequently been 

used for production. The upper interval is interpreted with 3.3 m net pay, 13.8% porosity, 42% water 

saturation and 237 mD permeability. Additional poorer quality pay in a lower section is also interpreted. 

7.1.4.2. Positives for hydrogen storage 

Good hydrogen storage capacity consistent with estimated storage needs. Based on the reported gas 

production, a theoretical total hydrogen storage capacity of 22 Bcf is calculated, as summarised in Table 

7-6. This is the combined Redback-2 and Redback South-1 production. 

Table 7-5: Redback Field production history to June 2015 and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.01 up to 2015 

Water production (MMstb)  0.1 up to 2015 

Gas production (Bcf) 22 up to 2015 

Approximate hydrogen storage capacity (Bcf) 22 

The Wagina Formation was divided into a better-quality upper zone and lower quality lower zone which 

are in hydraulic communication with a common GWC. The better reservoir in the upper zone may assist 

keeping injected hydrogen at the crest of the field. 

High gas rates have been measured in Redback South, indicating good injection and production capacity for 

hydrogen storage. RISC therefore considers the Redback South reservoir a strong candidate for the 

modelling stage. It may be possible to use the existing production well although a new processing facility 

would be required. 

7.1.4.3. Negatives for hydrogen storage 

In this limited review, no issues have been identified in using Redback South for hydrogen storage. The 

lower well test flowrate in Redback-2 make it less attractive than Redback South. 

7.1.5. Tarantula gas field 

Hydrogen storage potential: Strong 

7.1.5.1. Summary 

The Tarantula gas field is located in the L 11 license in the Perth Basin. It produced 12.7 Bcf of gas and 0.03 

MMstb of condensate from the Wagina Sandstone from 2005 to 2015. Post 2015 is estimated to have 

increased the cumulative gas production by 50% to approximately 19 Bcf. The Tarantula-1 ST1 well was 

perforated in upper and lower sections of the Wagina Sandstone. The lower sandstone has a net pay 

thickness of 11 mMD, permeability of 17.6 mD and an NTG of 51%. The top of the lower sandstone is 
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approximately 22m below the base of the upper sandstone. Production tests concluded that virtually all 

production originated from the lower sandstone. 

7.1.5.2. Positives for hydrogen storage 

Good hydrogen storage capacity consisted with estimated storage needs. Based on the reported gas 

production, a theoretical total hydrogen storage capacity of 19 Bcf is calculated, as summarised in Table 

7-6. 

Table 7-6: Tarantula Field production history to June 2015 and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.03 up to 2015 

Water production (MMstb) 0.07 up to 2015 

Gas production (Bcf) 19 (12.7 up to 2015) 

Approximate hydrogen storage capacity (Bcf) 19 

Although the permeability is relatively low at 17.6 mD compared to some other Perth Basin fields, 

Tarantula-1 ST1 was production tested at 35 MMscf/d indicating that high gas rates were historically 

achieved. RISC therefore considers Tarantula a strong candidate for the modelling stage.  

7.1.5.3. Negatives for hydrogen storage 

RISC considers there is uncertainty on communication between the upper and lower sandstones of the 

Wagina. Petrophysical interpretation concluded reservoir properties are better in the lower sandstone and 

that it was the source of the majority of production. If there is communication between the zones, there is 

risk that hydrogen injected in the lower sandstone could migrate upwards to the upper sandstone. The net 

pay thickness and permeability of the upper sandstone (2.7 mMD and 0.58 mD) render this zone a poor 

hydrogen storage candidate. The permeability of 17.6 mD in the lower sandstone is also low when 

compared to some other Perth Basin candidates, although not of significant concern.  

RISC considers there may be some uncertainty in the petrophysical interpretation of net sand and net pay. 

The net pay thickness and permeability are higher than the net sand. Whilst this does not disqualify 

Tarantula as a potential hydrogen storage candidate, if this field progresses to the modelling stage this 

should be reviewed to confirm stated reservoir properties. 

7.1.6. Tubridgi gas field 

Hydrogen storage potential: Strong 

7.1.6.1. Summary 

The Tubridgi gas field is located in the L 9 license in the Carnarvon Basin. The field produced 69 Bcf of gas 

from 1991 to 2005 with no condensate production noted. RISC notes that limited reservoir properties data 

are available in the public domain. 

7.1.6.2. Positives for hydrogen storage 

Significant production has occurred from the field, leaving good voidage for a storage project. Based on the 

gas production, a theoretical total hydrogen storage capacity of 69 Bcf is calculated, as summarised in 

Table 7-7. 
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Table 7-7: Tubridgi Field production history and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.0 

Water production (MMstb) 1.7 

Gas production (Bcf) 69.0 

Approximate hydrogen storage capacity (Bcf) 69.0 

The Tubridgi gas field has been proven as a natural gas storage facility, RISC therefore considers the field a 

strong candidate for hydrogen storage. The current operator, Australia Gas Infrastructure Group, claims 

field storage capacity of 52 PJ, or approximately 50 Bcf. Injection and withdrawal capacities are stated as 

90 TJ/d and 60 TJ/d respectively. Existing wells and surface infrastructure could potentially be used for 

hydrogen. The field is also located in the Carnarvon Basin, offering a storage site for green hydrogen 

produced in the surrounding area.  

It is likely that the existing wells and facilities could be used for hydrogen storage. 

7.1.6.3. Negatives for hydrogen storage 

As is the case with Mondarra, the current use of Tubridgi as a natural gas storage site is the main concern. 

The length of agreement/s in place between the operator and its’ customers and contractual terms and 

conditions are unknown to RISC. A strong business case would be required to stop natural gas storage and 

convert the field to pure hydrogen storage. 

7.1.7. Xyris gas field 

Hydrogen storage potential: Strong 

7.1.7.1. Summary 

The Xyris gas field is located in the L 1 license in the Perth Basin. It produced 9.3 Bcf of gas from the 

Dongara Sandstone from 2004 to 2010 with an initial monthly rate of 9.7 MMscf/d from 1 well. Production 

in the field is from a single well, Xyris-1, which was drilled due to success in the Dongara Sandstone at the 

nearby Hovea, Mondarra and Dongara fields. The well completion report (‘WCR’) concluded that the 

Dongara Sandstone may be under-pressured at Xyris-1 due to production in the nearby Hovea oil field. Log 

analysis indicated a 69 mD.m gross intersection with 21 mD.m of net pay. Average porosity is 11% and 

water saturation 18%. The WCR noted core derived permeabilities at the nearby Hovea-3 were 123-

2078mD. Given the conclusion that Xyris was partially depleted due to Hovea production, permeability at 

Xyris is assumed to be high and comparable with the Hovea field. 

Xyris South-1 was drilled in the Xyris South field, with well test interpretation indicating this well was in 

communication with Xyris-1. Production from Xyris South is minor (0.2 Bcf) and communication between 

these fields is not considered to be a risk for hydrogen storage. 

7.1.7.2. Positives for hydrogen storage 

The field has a good storage capacity consistent with estimated hydrogen storage requirements. Based on 

the reported gas production, a theoretical total hydrogen storage capacity of 9 Bcf is calculated, as 

summarised in Table 7-8. 
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Table 7-8: Xyris Field production history and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.02 

Water production (MMstb) 0.03 

Gas production (Bcf) 9.3 

Approximate hydrogen storage capacity (Bcf) 9.3 

The Xyris field produced a high volume of gas with minor condensate and water production. Although Xyris 

was interpreted to be in communication with the Hovea oil field, Xyris provides a potential hydrogen 

storage site in a gas bearing zone of the Dongara Sandstone. The high permeability will allow for high 

injection and withdrawal rates. 

The Xyris gas plant is currently being used for initial production from Waitsia gas field. Once the Waitsia gas 

plant is completed, the Xyris plant may potentially become available for hydrogen operations.  

7.1.7.3. Negatives for hydrogen storage 

The Xyris-1 well has been P&A’d as per the WAPIMS database. If the Xyris field was pursued as a storage 

field, new well/s would be required 

7.1.8. Yardarino gas field 

Hydrogen storage potential: Strong 

7.1.8.1. Summary 

The Yardarino gas field is located in the L 2 license in the Perth Basin. The field produced 5 Bcf of gas from 

1978 to shut-in in 2010 with negligible condensate production and a maximum monthly gas rate of 6.7 

MMscf/d. The primary field target was the Dongara Sandstone. Yardarino-1 intersected 19.5 m of gross 

pay, with 4 m net of oil and 14 m of net gas pay. Average porosity and water saturation in the gas bearing 

zone is 13% and 25% respectively. The field has high permeability at 120 mD. The GIIP was estimated at 15 

Bcf, suggesting a gas recovery factor of 33%. 

7.1.8.2. Positives for hydrogen storage 

The field has a good storage capacity consistent with estimated hydrogen storage requirements. Based on 

the reported gas production, a theoretical total hydrogen storage capacity of 5 Bcf is calculated, as 

summarised in Table 7-9. 

Table 7-9: Yardarino Field production history and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.005 

Water production (MMstb) 0.6 

Gas production (Bcf) 5.1 

Approximate hydrogen storage capacity (Bcf) 5.1 

The high permeability in the Yardarino field will allow for high injection and withdrawal rates. 
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7.1.8.3. Negatives for hydrogen storage 

Although there is uncertainty on GIIP estimations, recovery factor is estimated at 33% and therefore there 

is potential for a significant volume of unproduced natural gas remaining in the reservoir. Given the high 

permeability of the field, the low recovery factor for the pressure depletion/minor water drive reservoir is 

surprising and warrant further investigation. Whether the GIIP is overstated (and therefore recovery factor 

is actually higher), or water has influxed and stopped gas production, both present risks for hydrogen 

storage. High volumes of remaining gas present the risk of hydrogen contamination with methane and if 

water has influxed a larger cushion gas volume may be required. 

All wells in the Yardarino field (including Central and North Yardarino) are P&A as per WAPIMS, therefore 

new wells will need to be drilled if the field is pursued for hydrogen storage. This is not of significant 

concern and does not disqualify Yardarino as a potential candidate for modelling. 

7.1.9. Apium gas field 

Hydrogen storage potential: Moderate 

7.1.9.1. Summary 

The Apium gas field is located in the L 1 license of the Perth Basin. The field produced 1.2 Bcf with 

negligible condensate from the Dongara sandstone between 2007 and 2012, with a maximum gas rate 

from 1 well of 2.4 MMscf/d. Interpretation of the Apium-1 well test concluded low permeability, estimated 

at 4.5 mD. The GIIP was estimated from P/Z at 2.6 – 3.3 Bcf from the well test, however there is 

uncertainty on this value due to the limited production data available at the time. Volumetric calculations 

based on the model used in the well test analysis suggested GIIP of 3.4 Bcf, supporting the material balance 

estimates. The final pressure was 13 psi below initial suggesting a closed system. 

7.1.9.2. Positives for hydrogen storage 

The field has a good storage capacity consistent with estimated hydrogen storage requirements.  Based on 

the reported gas production, a theoretical total hydrogen storage capacity of 1 Bcf is calculated, as 

summarised in Table 7-10. 

Table 7-10: Apium Field production history and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.002 

Water production (MMstb) 0.01 

Gas production (Bcf) 1.2 

Approximate hydrogen storage capacity (Bcf) 1.2 

The first Apium well was drilled in 2004, with subsequent well in 2007. Apium North-1 was drilled with gas 

shows in 2009 but a P&A’d. Apium-1 and 2 are relatively new wells compared to some of the wells drilled 

at other fields in the Perth Basin (i.e. 1960’s) and have not been abandoned. They may be useable for 

hydrogen injection and withdrawal. 

7.1.9.3. Negatives for hydrogen storage 

RISC considers the main concern for hydrogen storage in the Apium field to be the low permeability, 

estimated at 4.5 mD at Apium-1. The low permeability will significantly reduce both potential injection and 
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withdrawal rates. With other fields in the Perth Basin having significantly higher permeability and 

productivity, Apium is less attractive than other candidates for hydrogen storage modelling. 

7.1.10. Gingin gas field 

Hydrogen storage potential: Low 

7.1.10.1. Summary 

The Gingin gas field is located in the EP 389 permit and L 18 and L 19 licenses in the Perth Basin. The field 

produced 1.7 Bcf of gas with minor condensate production from 1972 to 1976 with a maximum monthly 

rate of 6.4 MMscf/d. The target formation was the Cattamarra Coal Measures. Significant variation in 

reservoir properties were noted across the field.  

 Gingin-1 well with an average permeability of 70 mD produced 1.7 Bcf. Gingin-1 was deemed to be 

located in a small, isolated fault block likely bounded by thick shales. 

 Gingin-2 well is estimated to have poor permeability (2 mD) and the flowrate during a 14-day production 

testing dropped from 3 to 0.5 MMscf/d. 

The total field is estimated to have 477 Bcf GIIP but poor permeability and compartmentalization have 

limited production. 

7.1.10.2. Positives for hydrogen storage 

Gingin-1 has a good storage capacity consistent with estimated hydrogen storage requirements. Based on 

the reported gas production, a theoretical total hydrogen storage capacity of 2 Bcf is calculated, as 

summarised in Table 7-11. 

Table 7-11: Gingin Field production history and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.02 

Water production (MMstb) 0.02 

Gas production (Bcf) 1.7 

Approximate hydrogen storage capacity (Bcf) 1.7 

Well completion reports indicate Gingin-1 is located in a small, isolated fault block. Given the permeability 

at Gingin-1 was relatively high (70 mD), initial screening identified the Gingin field as a potential candidate 

for hydrogen storage.  

7.1.10.3. Negatives for hydrogen storage 

Although the Gingin field produced 1.7 Bcf, long term production tests from Gingin-1 noted low 

deliverability. The first Gingin-1 production test commenced in March 1972, with production lasting only 

until December 197215. Whilst Gingin-1 is isolated in a fault bounded block and estimated to have relatively 

high permeability at 70 mD, the poor deliverability is of concern for hydrogen storage as withdrawal rates 

may be low. The Gingin field therefore has moderate to low potential for hydrogen storage. 
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7.1.11. Red Gully gas field 

Hydrogen storage potential: Moderate 

7.1.11.1. Summary 

The Red Gully gas field is located in EP 389 permit and L 18 and L 19 licenses in the Perth Basin. The field 

produced 4 Bcf of gas and 0.2 MMstb of condensate from mid 2013 to June 2015 with minor water 

production. Petrophysical interpretation of Red Gully-1 indicated net pay average porosity of 13%, 

permeability of 4.5 mD and water saturation of 48%. Petrophysical interpretation of Red Gully North-1 

noted lower porosity at 11%, higher permeability at 23 mD and higher water saturation at 54%. 

7.1.11.2. Positives for hydrogen storage 

The field has a good storage capacity consistent with the estimated hydrogen storage requirements. Based 

on the reported gas production to end-2015, a theoretical total hydrogen storage capacity of 4 Bcf is 

calculated, as summarised in Table 7-12. 

Table 7-12: Red Gully Field production history to June 2015 and hydrogen storage potential 

Fluid Volume 

Condensate production (MMstb) 0.20 

Water production (MMstb) 0.01 

Gas production (Bcf) 4.01 

Approximate hydrogen storage capacity (Bcf) 4.0 

The average production rate from well Red Gully-1 in 2013-2015 is reasonable at 5 MMscf/d. RISC notes 

that we do not have access to production data for this field post June 2015. 

7.1.11.3. Negatives for hydrogen storage 

RISC is unaware of issue with Red Gully as a hydrogen storage field. The limited permeability may limit 

injection and re-production rates, 

7.1.12. Mount Horner oil field 

Hydrogen storage potential: Moderate 

7.1.12.1. Summary 

The Mount Horner oil field is located in the L 7 license in the Perth Basin. The field produced 1.9 MMstb of 

oil and 20.6 MMstb of water from 1984 to 2011, with no gas production recorded. The primary targets 

were the Cattamarra Coal Measures and Irwin River Coal Measures. The “F Sand” is located in the 

Cattamarra Coal Measures, with average porosity of 20%, permeability of 86-380 mD and water saturation 

of 60-70%. Production ceased in 2011 due to high water cut and aged infrastructure. 

7.1.12.2. Positives for hydrogen storage 

The oil production converts to a potential hydrogen storage volume of 1 Bcf (Table 7-13), which is a good 

storage capacity consistent with estimated hydrogen storage requirements.  
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Table 7-13: Mount Horner Field production history and hydrogen storage potential 

Fluid Volume 

Water production (MMstb) 20.6 

Oil production (MMstb) 1.9 

Oil production (MMrbbl) 2.0 

Reservoir volume (Brcf) 0.01 

Approximate hydrogen storage capacity (Bcf) 1.0 

The high reservoir permeability will allow for high injection and withdrawal rates. 

7.1.12.3. Negatives for hydrogen storage 

Water saturation in the F sand of the Cattamarra Coal Measures was 60-70%. There has been significant 

water production from the field, with water contributing 92% of total liquids production, the field was also 

shut-in due to high water cut. Therefore, water production is a risk during hydrogen storage and a cushion 

gas volume may be required to avoid this.  

RISC considers the storage of pure hydrogen in oil fields to be higher risk than gas fields. There is potential 

for the dissolution and/or reaction of hydrogen with oil. 

7.1.13. Dongara gas field 

Hydrogen storage potential: Moderate 

7.1.13.1. Summary 

The wells within the Dongara field are located in the L 1 and L 2, licenses in the Perth Basin. The field has 

produced 458 Bcf of gas from 1972 to 2015, significantly higher than the other gas fields reviewed in this 

report. The main reservoir of the field is the Dongara Sandstone. Reservoir parameters vary greatly in the 

field, with permeability of 26 mD at Dongara-25 to 2744 mD in Dongara-27. The average permeability is 

estimated at 230 mD. Average porosity and water saturation in the gas column is 21% and 15% 

respectively. The GIIP of the Dongara field was estimated at 540 Bcf, suggesting a recovery factor of 85%. 

7.1.13.2. Positives for hydrogen storage 

The field has a high storage capacity significantly higher than the WA estimated hydrogen storage 

requirements considered as part of this report. Based on the reported gas production, a theoretical total 

hydrogen storage capacity of 458 Bcf is calculated, as summarised in Table 7-14. 

Table 7-14: Dongara Field production history to June 2015 and hydrogen storage potential 

Fluid Volume 

Oil production (MMstb) 1.5 

Water production (MMstb) 2.2 

Gas production (Bcf) 457.7 

Approximate hydrogen storage capacity (Bcf) 457.7 

The permeability in the Dongara field is high, allowing for high injection and withdrawal rates. RISC notes 

that we do not have access to production data for this field post June 2015. 
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7.1.13.3. Negatives for hydrogen storage 

The Dongara gas field is very large (in terms of gas produced and GIIP estimates) compared to the other 

fields reviewed within this report. The field is currently depleted and given its significant size a large 

cushion gas volume may be required.  

Including side-tracks, there has been 47 wells drilled in total across the field, with 31 of these wells being 

drilled prior to 1991 (i.e. 30 years old). The integrity of these old wells for injection and withdrawal may be 

questionable and is a risk if the field is pursued as a storage candidate. Furthermore, the greatly varying 

reservoir properties (e.g. permeability of 26 mD and 2744 mD) seen across the field suggests modelling will 

be a more intensive process compared to the smaller Perth Basin fields. Considering only reservoir 

properties, the Dongara field is an attractive candidate for hydrogen storage, however RISC considers there 

are risks associated with its size and the age of some wells. 

7.2. Salt 

Evaporites (salt) of Ordovician and Silurian age are identified in the Canning, Southern Carnarvon and 

Northern Carnarvon Basins17 of WA (Figure 7-2). In addition, salt of Precambrian age has been identified in 

the Southern Canning, Officer and Amadeus Basins18. 

 

Figure 7-2: Evaporites in WA17  

 

                                                           
17 A Paleozoic perspective of Western Australia, A.J. Mory, 2017. 
18 Possible Major Diapric Structures in the Southern Canning and Northern Officer Basins, J. Craig et al. 
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The salt deposits in Canning Basin are the most significant, where evaporites are formed within arid red-

bed successions in the Carribuddy Group (Mallowa and Minjoo). Mapping by Haines19 (Figure 7-3) shows 

that locally the Mallowa salt is up to 800 m thick and is the most voluminous evaporite formation known in 

Australia.  

 

 

Figure 7-3: Isopach maps for a) Carribuddy Group, b) Minjoo Salt, c) Mallowa Salt and d) Worral Formation 19 

 

The thickest sequence of salt was encountered in Frome Rocks-1 well (Figure 7-4), located 150 km east of 

Broome, 100 km south of Derby and about 300 km to the north-east of the proposed Asian Renewable 

Energy Hub. The age and prevenance of the salt is poorly constrained. 

                                                           
19 The Carribuddy Group and Worral Formation, Canning Basin WA: Reassessment of the stratigraphy and petroleum 
potential, P.W.Haines, 2010. 
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Figure 7-4: Frome Rocks-1 composite log extract 

 

The evaporites in the Southern Carnarvon Basin are formed within the shallow-marine carbonate facies of 

the Dirk Hartog Group (Silurian Yaringa Formation) and are thinner (up to 105 m) as shown in Figure 7-5. 

The evaporates in the Northern Bonaparte Basin are known only from salt structures imaged on seismic 

reflection profiles and in wells drilled into salt domes. They are likely to be older than Late Devonian. 

Pure salt, or halite, is ideal for hydrogen storage. Halite appears to be the media for the known salt related 

storage sites. Halite is mobile in the subsurface and can express at the surface making it attractive as a 

storage solution (depth of burial). 

Evaporites are typically mixed lithologies with interbedded salt rich layers. The depth of burial and 

interbedded lithologies may make them unsuitable or less favourable to create salt caverns for hydrogen 

storage. The characteristics of the WA’s evaporites are not the scope of this study and further analysis is 

required. 

GSWA is currently undertaking a project to characterize subsurface salt in WA and map their distribution 

which will help inform their potential for salt cavern creation.  
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Figure 7-5: Evaporites in the Southern Carnarvon Basin 

 

Salt caverns for hydrogen storage must be created by circulating (pumping) low salinity water into the salt. 

This dissolves the salt returning high salinity brine. A suitable water source and disposal of the high salinity 

brine is required. 

The water supply does not have to be fresh water, but lower salinity water is more effective at creating 

caverns. The maximum solubility of salt in water is approximately 380 grams per kg, compared to seawater 

that has approximately 3.5g per kg. of water.  

Salt has a density of approximately 2.2 g/cc. Therefore, 2.2 tonnes of salt must be removed to form a 1 m3 

cavern. 7 to 10 m3 of water is required to dissolve 1 m3 of salt depending upon the initial water salinity and 

final brine saturation. Therefore, a salt cavern of 0.28 million m3 could store 1 Bcf hydrogen (assuming 

hydrogen expansion factor of 100v/v) and will require 2 to 3 million m3 water to create and this volume will 

need to be disposed of. 1 to 2 water supply wells would be required to provide this water within a 

reasonable timeframe (1-2 years). 

The suitability of salt deposits as hydrogen storage options is dependent on many factors, including the 

storage capacity requirement, access to water and disposal of brine. Commercial factors will also have an 

impact such as access to infrastructure such as roads, and the physical distance from the suitable storage 

site and the hydrogen plant and its offtake point. 
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8. Modelling recommendations and data adequacy 
A subsequent stage to this study is a modelling study of the high-graded fields identified in this report. 

Requirements and recommendations for this subsequent modelling study in addition to commentary on 

data adequacy are contained herein. 

8.1. Modelling requirements and recommendations 

Modelling of hydrogen storage in salt caverns requires only simple tank models with crestal hydrogen 

injection displacing basal brine. However, as in all storage options, microbial activity and corresponding 

hydrogen losses must also be evaluated.  

Hydrogen storage in porous water bearing traps is relatively simple, requiring only two components (water 

and hydrogen). However, the amount of available subsurface data (wells, core) may be limited compared 

to depleted oil and gas fields. Seismic acquisition and appraisal drilling is likely to be required to appraise 

the structure and geology.  

Modelling in depleted gas fields is more complex and requires the modelling of hydrogen, remaining native 

natural gas plus other gasses that may be used to supplement cushion gas (i.e. CO2, nitrogen) in addition to 

the aquifer.  

Black oil simulators typically used in the hydrocarbon energy industry cannot model two gas phases. 

Compositional simulation is required to accurately model the two separate gases (hydrogen and natural 

gas). Software commonly available and utilised by the oil and gas industry can be used to generate 3D 

subsurface geological models and undertake 3D compositional simulation.  

Hydrogen is lower density than natural gas, with gravity or buoyancy forces acting on the gas phases 
hydrogen will migrate to the crest of the structure. If hydrogen is injected at the crest of the depleted gas 
field, mixing of hydrogen with native and/or cushion gas may be limited. If hydrogen is injected deeper in the 
field, buoyancy forces will make it migrate towards the crest and mix with native hydrocarbon gas and/or 
cushion gas. 

In addition, hydrogen is 1.5 times more mobile than natural gas. Viscous forces will cause hydrogen 

fingering into the native and/or cushion gas. If gravity forces dominate the degree of fingering may 

however be limited. Limiting the rate of hydrogen injection will reduce viscous fingering and resulting gas 

mixing.  

Literature in the public domain regarding modelling hydrogen storage in porous media is limited: 

 Hydrogen injection has been simulated in a homogenous water bearing reservoir using Eclipse300 

compositional simulation software20. Initially nitrogen was injected as cushion gas followed by hydrogen 

for storage. In the first cycle of hydrogen re-production the produced gas contained 52% hydrogen on 

average (48% nitrogen). After three cycles of hydrogen injection and re-production the produced gas 

contained 85% hydrogen on average.  

 Scafidi21 presented results of compositional modelling of hydrogen storage in a natural gas field. 

Simulation of seasonal storage over 20 years resulting in 95% hydrogen recovery with minimal mixing in 

                                                           
20 Subsurface porous media hydrogen storage – scenario development and simulation. Pfeiffer and Bauer, 2015. 
21 Compositional simulation of hydrogen storage in a depleted gas field. EGU General Assembly 2021. 
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the reservoir. The use of natural gas as a cushion gas was shown to reduce the risk of hydrogen losses 

due to water coning. 

 Feldmann22 simulated cycles of hydrogen storage/production in a large onshore European gas field. 

Hydrogen was injected and re-produced after injecting a mixture of methane and nitrogen as cushion 

gas. The hydrogen concentration in the re-produced gas declined from 97% to 82% during each cycle of 

production. The hydrogen recovery factor is not reported. 

If available, existing geological models developed for the fields development and reservoir management 

may be useful as a prior input to a more sophisticated compositional dynamic model. However, RISC 

recommends a ‘ground-up’ integrated subsurface modelling approach incorporating the following scope: 

 Compilation of a comprehensive database, including seismic and well data. 

 Review and critique of pre-existing studies, evaluations and development plans. 

 Petrophysical analysis of key offset and wells from the field for reservoir characterisation, including 

lithological and reservoir flow-unit picks. 

 Seismic interpretation and derivation of key well calibrated depth surfaces for construction of a 

geological static model. 

 Geological reference case static model construction incorporating well and seismic interpretations and 

utilising appropriate workflows for populating and propagating reservoir parameters. 

It is assumed that a comprehensive uncertainty analysis is not required in the modelling, such as the 

construction of low and high case models in addition to the reference case, nor experimental design of 

simulation parameters. 

For screening studies simpler two-phase black oil models may provide first pass results: 

 Two gases cannot be modelled in these simpler models so the remaining natural gas in the reservoir 

would have to be modelled as hydrogen (i.e. given the same fluid properties as the injected hydrogen).  

 Tracers could be used to track injected hydrogen compared to gas originally in place and give an 

indication of hydrogen/original gas mixing and the proportion of injected hydrogen in the back produced 

gas.  

 Such simpler models will have a quicker run time and potentially lower cost for software licenses. 

However, gravity segregation, mixed gas relative permeabilities and viscous fingering of hydrogen and 

natural gas is not modelled, limiting the accuracy of results.  

 The simplified model results may be acceptable for screening if the volume of remaining natural gas is 

small compared to the planned hydrogen injection and no alternative cushion gas is to be injected. 

RISC recommends that one or more of the preferred hydrogen storage fields as described in this report is 

selected for modelling and that both simplified and full compositional dynamic modelling is conducted to 

evaluate the hydrogen storage potential and the short comings from simplified modelling.  

8.2. Data adequacy 

A key advantage of assessing and modelling depleted fields over aquifer traps is that the available data (i.e. 

seismic data, well control, log data, core, laboratory analyses) is more readily available and likely to provide 

a comprehensive database for hydrogen storage modelling.  

                                                           
22 Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storage. Environmental 
Earth Science, Feldman 2016. 
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It is assumed for the modelling project that documentation, data and analysis that are publicly available or 

open file are utilised and that no new additional data acquisition or analysis are conducted.  

All the depleted oil and gas fields assessed in this report, including those recommended for the modelling 

stage, are covered with 3D seismic data. This is ideal for the construction of a geological static model which 

will not be compromised by the uncertainties of subsurface structure offered by 2D seismic coverage 

alone.  

A review of the 3D seismic data quality, nor the processing vintage publicly available, was not undertaken 

by RISC as part of this study. It is therefore assumed that for the modelling study the most recent publicly 

available processing vintage will be utilised for the seismic interpretation as input to the geologic static 

modelling. 

Geomechanical data is also likely to be available from hydrocarbon development studies and can be used 

to estimate maximum hydrogen pressure and columns, so as not to rupture cap rock.  

RISC has not identified any data adequacy issues in regard to a subsequent modelling project. However, 

RISC notes the following: 

 Hydrogen relative permeability in a mixed gas system is a key uncertainty. Similarly, the relative 

permeability of natural gas in the presence of hydrogen is also an uncertainty. It may then be prudent to 

undertake further literature searches and core analysis to estimate and confirm relative permeabilities.  

 Although not common, geochemical reaction of hydrogen with kerogen, clays and minerals in the cap 

rock can result in hydrogen losses and affect caprock integrity. A review of, and possibly additional 

laboratory tests with core may be required.  

 The risk of sulphur reducing bacteria souring the stored hydrogen with H2S must be evaluated. This will 

require a review of previous research and possible additional laboratory work with core. 

 Field tests indicate that standard gas storage facilities are suitable with up to 20% hydrogen. However, 

experience with pure hydrogen storage is limited. The risk of metallurgy and more likely valve seal and 

elastomer failure needs to be confirmed.  

RISC notes that following the completion of a modelling study, shortcomings and adequacy of the available 

data will be further quantified and that recommendations regarding the acquisition of new data should be 

expected. 

8.3. Modelling study timeframe 

A modelling study would have considerable scope as outlined above, consequently it would be expected 

that modelling of one depleted field would take 2 – 3 months. Should the scope include more than one 

field, then it is reasonable to anticipate that timing would as a consequence increase. 

If the hydrocarbon field evaluation, development plan and pre-existing models are available, or the inputs 

to geological modelling such as petrophysical analyses and seismic interpretations, then the scope and 

timing of a study could therefore be reduced. Converting and evaluating the dynamic models for a 

hydrogen storage study could be completed in a few weeks. 

However, RISC opinion is that recycling or utilising existing modelling and studies without comprehensive 

quality control may adversely affect the quality of the results. 

Any additional geomechanical, geochemical and microbial studies as afore mentioned could be conducted 

in parallel with the modelling work. 
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The Indicative scope and timeframe are for an evaluation and modelling feasibility study only. Progressing 

any hydrogen storage opportunity through front-end engineering and design (‘FEED’) in addition to the 

required regulatory and environmental approvals prior to a final investment decision is not included. 
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9. Declarations 

9.1. Terms of Engagement 

This report, any advice, opinions or other deliverables are provided pursuant to the Engagement Contract 

agreed to and executed by the Client and RISC. 

9.2. Qualifications 

RISC is an independent oil and gas advisory firm. All the RISC staff engaged in this assignment are 

professionally qualified engineers, geoscientists or analysts, each with many years of relevant experience 

and most have in excess of 20 years.  

9.3. Limitations 

The assessment of petroleum assets is subject to uncertainty because it involves judgments on many 

variables that cannot be precisely assessed, including reserves/resources, future oil and gas production 

rates, the costs associated with producing these volumes, access to product markets, product prices and 

the potential impact of fiscal/regulatory changes.  

The statements and opinions attributable to RISC are given in good faith and in the belief that such 

statements are neither false nor misleading. While every effort has been made to verify data and resolve 

apparent inconsistencies, neither RISC nor its servants accept any liability, except any liability which cannot 

be excluded by law, for its accuracy, nor do we warrant that our enquiries have revealed all of the matters, 

which an extensive examination may disclose. In particular, we have not independently verified property 

title, encumbrances or regulations that apply to these assets. 

We believe our review and conclusions are sound, but no warranty of accuracy or reliability is given to our 

conclusions. 

Our review was carried out only for the purpose referred to above and may not have relevance in other 

contexts. 

9.4. Use of advice or opinion and reliance 

We understand that the client will make the Report a public document. The Report is for benefit of the 

Client and may not be relied upon by any 3rd party. 

9.5. Independence 

RISC makes the following disclosures: 

 RISC is independent with respect to DMIRS and confirms that there is no conflict of interest with any 

party involved in the assignment. 

 Under the terms of engagement between RISC and DMIRS, RISC will receive a time-based fee, with no 

part of the fee contingent on the conclusions reached, or the content or future use of this report. 

Except for these fees, RISC has not received and will not receive any pecuniary or other benefit whether 

direct or indirect for or in connection with the preparation of this report. 

 Neither RISC Directors nor any staff involved in the preparation of this report have any material interest 

in the Client or in any of the properties described herein. 
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9.6. Copyright 

This document is protected by copyright laws. 
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10. List of terms 
The following lists, along with a brief definition, abbreviated terms that are commonly used in the oil and 

gas industry and which may be used in this report. 

Term Definition 

1P Equivalent to Proved reserves or Proved in-place quantities, depending on the context. 

2P The sum of Proved and Probable reserves or in-place quantities, depending on the context. 

2D Two Dimensional 

3D Three Dimensional 

4D Four Dimensional – time lapsed 3D in relation to seismic 

3P The sum of Proved, Probable and Possible Reserves or in-place quantities, depending on the context. 

AOF Absolute Open Flow (maximum well flowrate with atmospheric pressure at perforations) 

Bbl US Barrel 

BBL/D US Barrels per day 

Bcf Billion (109) cubic feet 

Bcm Billion (109) cubic metres 

BFPD Barrels of fluid per day 

BOPD Barrels of oil per day 

°C Degrees Celsius 

CGR Condensate Gas Ratio – usually expressed as bbl/MMscf 

Contingent 
Resources 

Those quantities of petroleum estimated, as of a given date, to be potentially recoverable from known 
accumulations by application of development projects but which are not currently considered to be 
commercially recoverable due to one or more contingencies. Contingent Resources are a class of discovered 
recoverable resources as defined in the SPE-PRMS. 

CO2 Carbon dioxide 

CP Centipoise (measure of viscosity) 

DEG Degrees 

DST Drill stem test 

E&P Exploration and Production 

EG 
Gas expansion factor. Gas volume at standard (surface) conditions/gas volume at reservoir conditions 
(pressure and temperature) 

EOR Enhanced Oil Recovery 

EUR Economic ultimate recovery 

Expectation The mean of a probability distribution 

F Degrees Fahrenheit 

FDP Field Development Plan 

FEED Front End Engineering and design 

FID Final investment decision 

FM Formation 

FWL Free Water Level 

FVF Formation volume factor 

GIIP Gas Initially In Place 

GOC Gas-oil contact 
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Term Definition 

GOR Gas oil ratio 

GRV Gross rock volume 

GWC Gas water contact 

H2S Hydrogen sulphide 

HHV Higher heating value 

JV(P) Joint Venture (Partners) 

Kh Horizontal permeability 

km2 Square kilometres 

Krw Relative permeability to water 

Kv Vertical permeability 

kPa Kilo (thousand) Pascals (measurement of pressure) 

Mstb/d Thousand Stock tank barrels per day 

m Metres 

MDT Modular dynamic (formation) tester 

mD Millidarcies (permeability) 

MJ Mega (106) Joules 

MMbbl Million US barrels 

MMscf(d) Million standard cubic feet (per day) 

MMstb Million US stock tank barrels 

Mscf Thousand standard cubic feet 

Mstb Thousand US stock tank barrels 

MPa Mega (106) pascal (measurement of pressure) 

mss Metres subsea 

MSV Mean Success Volume 

mTVDss Metres true vertical depth subsea 

NTG Net to Gross (ratio) 

ODT Oil down to 

OGIP Original Gas In Place 

OOIP Original Oil in Place 

OWC Oil-water contact 

P90, P50, P10 
90%, 50% & 10% probabilities respectively that the stated quantities will be equalled or exceeded. The P90, 
P50 and P10 quantities correspond to the Proved (1P), Proved + Probable (2P) and Proved + Probable + 
Possible (3P) confidence levels respectively.  

PBU Pressure build-up 

PJ Peta (1015) Joules 

psia Pounds per square inch pressure absolute 

PVT Pressure, volume & temperature 

RFT Repeat Formation Test 

RT Measured from Rotary Table or Real Terms, depending on context 

scf Standard cubic feet (measured at 60 degrees F and 14.7 psia) 

Sg Gas saturation 

Sgr Residual gas saturation 
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Term Definition 

stb Stock tank barrels 

STOIIP Stock Tank Oil Initially In Place 

Sw Water saturation 

Tcf Trillion (1012) cubic feet 

TJ Tera (1012) Joules 

TVD True vertical depth 

TWh Trillion (109) Watt Hours 

WCR Well Completion Report 
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Appendix A – Field descriptions 

Hovea Field Description 

 

Permit L 1/ L 2 

Basin Perth Basin 

Reservoir Dongara Sandstone 

Main hydrocarbon Oil 

Discovery well Hovea-1 

Production start Late 2002 

Production end Late 2004 

Production 
Oil: 7.3 MMstb 

Gas: 3.7 Bcf 

 

 

 

 

 

 

Reservoir properties (Hovea-1 Structure) 

Depth 1996 m 

Initial Reservoir pressure N/A 

Reservoir temperature N/A 

Reservoir thickness (gross) 50 m 

Net to gross 90% 

Porosity 12 to 18% 

Permeability 600 mD 
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Mondarra Field Description 

 

Permit L 1/EP 23/LP1-171H  

Basin Perth Basin 

Reservoir Dongara Sandstone 

Main hydrocarbon Gas 

Discovery well Mondarra-1 

Production start 1972 

Production end 1994* 

Production 
Condensate: 0.06 MMstb 

Gas: 23.9 Bcf 

* Note that Mondarra is currently operating as a gas 

storage facility 

 

 

 

 

 

Reservoir properties (Mondarra-1 Structure) 

Depth 2602m (top reservoir) 

Initial Reservoir pressure 4255 psia 

Reservoir temperature 102 deg C 

Reservoir thickness (gross) 46 m 

Net to gross 70% 

Porosity 15% 

Permeability 127 mD 
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Beharra Springs Field Description 

 

Permit L 11 

Basin Perth Basin 

Reservoir Wagina Sandstone 

Main hydrocarbon Gas 

Discovery well Beharra Springs 1 

Production start 1991 

Production end After 2015 

Production to 2015 
Condensate: 0.2 MMstb 

Gas: 89 Bcf 

 

 

 

 

 

 

Reservoir properties (Beharra Springs-1 Structure – Upper Sandstone) 

Depth 3250 m (top reservoir) 

Initial Reservoir pressure 4975 psia 

Reservoir temperature 141 deg C 

Reservoir thickness (gross) 20 m 

Net to gross 62.5% 

Porosity 13% 

Permeability 514 mD 
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Redback Field Description 

 

Permit L 11 

Basin Perth Basin 

Reservoir Wagina Sandstone 

Main hydrocarbon Gas 

Discovery well Redback-1 

Production start 1992 

Production end After 2015 

Production to 2015 
Condensate: 0.01 MMstb 

Gas: 22 Bcf 

 

 

 

 

 

 

Reservoir properties (Redback South-1 Structure – Upper Sandstone) 

Depth 3775 m (top reservoir) 

Initial Reservoir pressure (mid-perf) 5263 psia 

Reservoir temperature 150 deg C 

Reservoir thickness (gross) 6 m 

Net to gross 53% 

Porosity 14% 

Permeability 237 mD 
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Tarantula Field Description 

 

Permit L 11 

Basin Perth Basin 

Reservoir Wagina Sandstone 

Main hydrocarbon Gas 

Discovery well Tarantula-1 

Production start 2005 

Production end After 2015 

Production to 2015 
Condensate: 0.03 MMstb 

Gas: 12.7 Bcf 

 

 

 

 

 

 

Reservoir properties (Lower Sandstone) 

Depth 3228 mRT (top of lower sandstone) 

Initial Reservoir pressure N/A 

Reservoir temperature N/A 

Reservoir thickness (gross) 11 m 

Net to gross 51% 

Porosity 11% 

Permeability 17.6 mD 
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Tubridgi Field Description 

 

Permit L 9  

Basin Southern Carnarvon 

Reservoir 
Birdrong, Flacourt, 

Mungaroo Sandstones 

Main hydrocarbon Gas 

Discovery well Tubridgi-1 

Production start 1991 

Production end 2005* 

Production 
Condensate: minor 

Gas: 69.0 Bcf 

* Note that the Tubridgi field is currently operating as a 

gas storage facility. 

 

 

 

 

Reservoir properties (Tubridgi-1, Tyrbridgi-9) 

Depth 518 m (top reservoir) 

Initial Reservoir pressure ~ 700 psia 

Reservoir temperature ~40 deg C 

Reservoir thickness (gross) 40 m 

Net to gross N/A 

Porosity 15 - 35% (average 26%) 

Permeability 3 – 600 mD (average 10 mD) 
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Xyris Field Description 

 

Permit L 1 

Basin Perth 

Reservoir Dongara Sandstone 

Main hydrocarbon Gas 

Discovery well Xyris-1 

Production start 2004 

Production end 2010 

Production 
Condensate: 0.02 MMstb 

Gas: 9.3 Bcf 

 

 

 

 

 

 

Reservoir properties (Xyris-1 Structure) 

Depth 2574 m (top reservoir) 

Initial Reservoir pressure N/A 

Reservoir temperature N/A 

Reservoir thickness (gross) 69 m 

Net to gross 30% 

Porosity 11% 

Permeability 123 – 2078 mD (taken from nearby Hovea-3 well) 
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Yardarino Field Description 

 

Permit L 2 & LP-111H 

Basin Perth Basin 

Reservoir Dongara Sandstone 

Main hydrocarbon Gas 

Discovery well Yardarino-1 

Production start 1978 

Production end 2010 

Production 
Condensate: 0.01 MMstb 

Gas: 5.08 Bcf 

 

 

 

 

 

 

Reservoir properties (Yardarino-1) 

Depth 2238 m (top reservoir) 

Initial Reservoir pressure 3395 psia 

Reservoir temperature 97.1 deg C 

Reservoir thickness (gross) 15 m 

Net to gross 93% 

Porosity 15% 

Permeability 200 mD 
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Apium Field Description 

 

Permit L 1 

Basin Perth Basin 

Reservoir Dongara sandstone 

Main hydrocarbon Gas 

Discovery well Apium-1 

Production start 2007 

Production end 2012 

Production 
Condensate: 0.00 MMstb 

Gas: 1.19 Bcf 

 

 

 

 

 

 

Reservoir properties (Apium-1) 

Depth 2630 m (pressure gauge) 

Initial Reservoir pressure 3874 psia 

Reservoir temperature 114 deg C 

Reservoir thickness ~9 m (perforated pay zone) 

Net to gross N/A 

Porosity 8.5% 

Permeability 4.5 mD 
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Gingin Field Description 

 

Permit EP 389, L 18, L 19 

Basin Perth Basin 

Reservoir Cattamarra Coal Measures 

Main hydrocarbon Gas 

Discovery well Gingin-1 

Production start 1972 

Production end 1976 

Production 
Condensate: 0.02 MMstb 

Gas: 1.71 Bcf 

 

 

 

 

 

 

Reservoir properties (Gingin-1 Structure) 

Depth 3661 m (top reservoir) 

Initial Reservoir pressure N/A 

Reservoir temperature N/A 

Reservoir thickness (gross) 300 m 

Net to gross N/A 

Porosity 8% 

Permeability 70 mD 
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Red Gully Field Description 

 

Permit EP 389, L 18, L 19 

Basin Perth Basin 

Reservoir Cattamarra Coal Measures 

Main hydrocarbon Gas 

Discovery well Red Gully-1 

Production start 2013 

Production end After 2015 

Production to 2015 
Condensate: 0.20 MMstb 

Gas: 4.01 Bcf 

 

 

 

 

 

 

Reservoir properties (Sand Member D) 

Depth 3735 m (top reservoir) 

Initial Reservoir pressure N/A 

Reservoir temperature N/A 

Reservoir thickness (gross) 20 m 

Net to gross N/A 

Porosity 11% - 13% 

Permeability 4.5 – 23 mD 
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Mount Horner Field Description 

 

Permit L 7 

Basin Perth Basin 

Reservoir Cattamarra Coal Measures 

Main hydrocarbon Gas 

Discovery well Mt Horner-1 

Production start 1984 

Production end 2011 

Production 
Oil: 1.9 MMstb 

Gas: 0.0 Bcf 

 

 

 

 

 

 

Reservoir properties (F Sand) 

Depth 1015 m (top reservoir) 

Initial Reservoir pressure 1555 psig 

Reservoir temperature 75.5 deg C 

Reservoir thickness (gross) 7.5 – 10 m 

Net to gross 31 – 88% 

Porosity 14 – 27% 

Permeability 86 – 380 mD 
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Dongara Field Description 

 

Permit L 1, L 2 

Basin Perth Basin 

Reservoir Dongara Sandstone 

Main hydrocarbon Gas 

Discovery well Dongara-1 

Production start 1972 

Production end After 2015 

Production 
Oil: 1.54 MMstb 

Gas: 457 Bcf 

 

 

 

 

 

Reservoir properties (Multiple wells) 

Depth 1622 m (top reservoir in Dongara-1) 

Initial Reservoir pressure 2457 psia 

Reservoir temperature 72.2 deg C 

Reservoir thickness (gross) 11 – 39 m 

Net to gross 28 – 100% 

Porosity 15 – 28% 

Permeability 26 to 648 mD 
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Attendees

Name Affiliation email Project
Adam Craig RISC adam.craig@riscadvisory.com https://riscadvisory.com/

Stephen Newman RISC stephen.newman@riscadviroy.com

Chris Evans RISC chris.evans@riscadvisory.com

Peter Stephenson RISC peter.stephenson@riscadviroy.com

Deidre Brooks DMIRS Deidre.BROOKS@dmirs.wa.gov.au
https://www.dmirs.wa.gov.au
https://www.dmp.wa.gov.au/Geological-Survey/

Sunil Sharma DMIRS Sunil.VARMA@dmirs.wa.gov.au

Charmaine Thomas DMIRS Charmaine.THOMAS@dmirs.wa.gov.au

Arthur Mory DMIRS Arthur.MORY@dmirs.wa.gov.au

Jeffrey Haworth DMIRS Jeffrey.HAWORTH@dmirs.wa.gov.au

Katie Cook JTSI Katie.COOK@jtsi.wa.gov.au
https://www.wa.gov.au/government/publications/western-australian-renewable-hydrogen-strategy-and-
roadmap

Jonathan Ennis King CSIRO Jonathan.Ennis-King@csiro.au
https://research.csiro.au/hydrogenfsp/our-research/projects/our-research-in-underground-hydrogen-
storage-in-australia/

Joel Sarout CSIRO Joel.Sarout@csiro.au
https://research.csiro.au/hydrogenfsp/our-research/projects/impact-of-hydrogen-on-underground-
reservoir-properties-laboratory-characterisation-reservoir-conditions/

Karsten Michael CSIRO karsten.michael@csiro.au

Katriona Edlmann
University of 
Edinburgh

katriona.edlmann@ed.ac.uk HyStorPor https://blogs.ed.ac.uk/hystorpor/

Ali Hassanpouryouzband
University of 
Edinburgh

hssnpr@ed.ac.uk HyStorPor

Andrew Feitz Geoscience Australia Andrew.Feitz@ga.gov.au Exploring for the Future
https://www.ga.gov.au/scientific-topics/energy/resources/hydrogen
https://www.ga.gov.au/news-events/news/latest-news/exploring-for-the-future

Simon Holford University of Adelaide simon.holford@adelaide.edu.au https://hydrogencrc.com.au/

Mark Bunch University of Adelaide mark.bunch@adelaide.edu.au

Markus Pichler RAG Markus.Pichler@rag-austria.at UG Sun Storage https://www.underground-sun-storage.at/en/

2 x attendees HOT office@uest.at https://uest.at/wp-content/uploads/2021/04/UEST_UndergroundEnergyStorageTechnologies.pdf

Sam Xie Curtin University quan.xie@curtin.edu.au

Chris Elders Curtin University chris.elders@curtin.edu.au

mailto:adam.craig@riscadvisory.com
https://riscadvisory.com/
mailto:stephen.newman@riscadviroy.com
mailto:chris.evans@riscadvisory.com
mailto:peter.stephenson@riscadviroy.com
mailto:Deidre.BROOKS@dmirs.wa.gov.au
https://www.dmirs.wa.gov.au/
https://www.dmp.wa.gov.au/Geological-Survey/
mailto:Sunil.VARMA@dmirs.wa.gov.au
mailto:Charmaine.THOMAS@dmirs.wa.gov.au
mailto:Arthur.MORY@dmirs.wa.gov.au
mailto:Jeffrey.HAWORTH@dmirs.wa.gov.au
mailto:Katie.COOK@jtsi.wa.gov.au
https://www.wa.gov.au/government/publications/western-australian-renewable-hydrogen-strategy-and-roadmap
mailto:Jonathan.Ennis-King@csiro.au
https://research.csiro.au/hydrogenfsp/our-research/projects/our-research-in-underground-hydrogen-storage-in-australia/
mailto:Joel.Sarout@csiro.au
https://research.csiro.au/hydrogenfsp/our-research/projects/impact-of-hydrogen-on-underground-reservoir-properties-laboratory-characterisation-reservoir-conditions/
mailto:karsten.michael@csiro.au
mailto:katriona.edlmann@ed.ac.uk
https://blogs.ed.ac.uk/hystorpor/
mailto:hssnpr@ed.ac.uk
mailto:Andrew.Feitz@ga.gov.au
https://www.ga.gov.au/scientific-topics/energy/resources/hydrogen
mailto:simon.holford@adelaide.edu.au
https://hydrogencrc.com.au/
mailto:mark.bunch@adelaide.edu.au
mailto:Markus.Pichler@rag-austria.at
https://www.underground-sun-storage.at/en/
mailto:office@uest.at
https://uest.at/wp-content/uploads/2021/04/UEST_UndergroundEnergyStorageTechnologies.pdf
mailto:quan.xie@curtin.edu.au
mailto:chris.elders@curtin.edu.au


Review of WA hydrogen 
subsurface storage potential
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Premise for RISC study

▪ The Government of Western Australia has developed a renewable hydrogen

strategy and roadmap with a vision that Western Australia will become a

significant producer, exporter and user of renewable hydrogen

▪ Several world scale renewable energy sites and several smaller sites are

being considered in WA which will produce hydrogen such as:

– Western Green Energy Hub (50 GW)

– Asian renewable hub (26 GW)

▪ It is likely that there will be a need to develop transitory storage of the

hydrogen produced, especially due to distance of the sites to end users

▪ The premise is that the need will be to recover hydrogen in a pure form

rather than low concentrations in hydrocarbon gas

▪ DMIRS asked RISC to do a review of subsurface storage options, although

we note that surface and chemical storage options are also being

considered by the industry

– ammonia is part of many of the renewable project plans

Western Australia’s renewable portfolio is 
second to none

Sun, wind and space



Part 1 literature review – 340+ articles and counting! 
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Where is hydrogen currently being stored? 

Country Field
Storage 

type
Depth 

(m)
H2 %

Volume 
(103 m3)

Volume 
(Bscf)*

USA Spindletop Salt dome 95 906 2.5

USA Clemens Dome Salt dome 800 95 580 0.92

USA Moss Bluff Salt dome 800 ? 566 1.2

UK Teeside Bedded salt 350-400 95 210 0.23

France Beynes Aquifer 50 330,000 586

Germany Keil Salt cavern 60 32 2.5

Germany Ketzin Aquifer 62 ?

Czech republic Lobodice Aquifer 50 ?

Argentina
Diadema 

(HyChico?)
Depleted gas 

reservoir
10 ?

Austria
Underground 
Sun Storage 

(RAG)

Depleted gas 
reservoir

10 ?

▪ There are only a handful of subsurface sites are currently used to 

store hydrogen

▪ Only 4 of these store ‘pure’ hydrogen

▪ All of them in salt

▪ Volumes are small by oil and gas fields  – a few Bscf

* Ball park estimates



Where are new hydrogen storage sites being considered? 

▪ Salt caverns are by far the prime focus for new hydrogen storage sites 

▪ Poland and Romania dominate due to location of  Permian and 

Triassic salt deposits and proximity to Europe

▪ Some salt dome sites being considered in the USA  
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Salt deposits in the world
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Many countries are reviewing their hydrogen storage options



Subsurface storage options

▪ Manufactured by dissolving salt in water and can be customised to operational
requirements

▪ Very low permeability contains the hydrogen

▪ Relatively high recovery and a recharge time in the order of days/weeks.

▪ Most robust means of storing hydrogen and has been proved to work

▪ Drawback is they need access to large amounts of water in their manufacture
and need a means to dispose of the generated brine – a particular issue in
Australia

▪ Presents several challenges and remains unproven.

▪ The physical behaviors and properties of hydrogen is more chemically reactive that
natural gas which may impact reservoir quality, flow behaviour and seal capacity.

▪ Hydrogen also an energy source for subsurface microbial processes which can turn
the hydrogen into methane or hydrogen sulphide

▪ The size of the site is fixed and cannot be customised to operational requirements
– and risk of high percentage of cushion gas

▪ Recharge time in the order of months due to relatively low permeability of
reservoir to salt caverns

Porous media (depleted gas and oil fields or aquifers)Salt caverns



Benchmarking WA storage requirements
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• We note the stated target capacities will require huge investment (order of magnitude cost estimates)

▪ The WA subsurface hydrogen storage capacity required for individual sites could be material
▪ Size could be consistent with existing storage projects and bigger than NWS LNG storage tanks
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Potential storage location screening criteria

▪ RISC have used the following criteria to screen depleted fields for hydrogen storage:

– Location – onshore is preferable

– Type of fluid (gas preferable to oil)

– Existing infrastructure

– Oil and gas production data to determine if sufficient storage volume is available

– Formation thickness, net to gross and permeability, to ensure sufficient productivity

– Drive mechanism, aquifer support preferable



WA proposed renewable and potential subsurface storage sites  
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Location of renewable and potential subsurface storage sites  

Depleted fields Renewable sites

Murchison 
renewable

WGEH

Yuri

Asian Renewable 
Energy Hub

HyEnergy

Dongara +

Tubridgi

▪ Majority of the major renewable energy sites not adjacent to depleted fields

▪ Exception is the Murchison project and several small renewable sites which are

close to North Perth Basin fields

▪ Asian Renewable Hub is relatively close to Canning Basin salt, although the

distances are still large!

Ord Hydrogen

Canning Basin 
Salt

Gingin/Red Gully



Findings

▪ The global subsurface hydrogen storage industry is at an embryonic stage, but we expect a strong future

▪ Several globally significant renewable energy sites are currently being considered in WA, all of which have the intent to produce hydrogen

– Many of these have plans to convert some/all of the hydrogen to ammonia

– We are not aware of subsurface storage options being considered, but this could change

▪ The required storage volume has a bearing on the ideal storage method

▪ Salt caverns

- Most robust means of storing hydrogen

- Have been proved to work

- Can be customised to operational requirements

- Key issues are location of salt, access to water and disposal of brine

- Canning Basin salt could provide a good opportunity if environmental concerns can be addressed

▪ Porous media (depleted gas and oil fields or aquifers)

- Present several technical challenges and remains unproven.

- The size of the site is fixed and cannot be customised to operational requirements

- While we expect the depleted oil and gas fields will present technical challenges, they could still present viable options



Declarations

Terms of Engagement

▪ This report, any advice, opinions or other deliverables are provided pursuant to the Engagement Contract agreed to and executed by the Client and RISC.

Standard

▪ Reserves and resources are reported in accordance with the definitions of reserves, contingent resources and prospective resources and guidelines set out in the Petroleum Resources
Management System (PRMS) prepared by the Oil and Gas Reserves Committee of the Society of Petroleum Engineers (SPE) and reviewed and jointly sponsored by the American Association of
Petroleum Geologists (AAPG), World Petroleum Council (WPC), Society of Petroleum Evaluation Engineers (SPEE), Society of Exploration Geophysicists (SEG), Society of Petrophysicists and Well
Log Analysts (SPWLA) and European Association of Geoscientists and Engineers (EAGE), revised June 2018.

Limitations

▪ The assessment of petroleum assets is subject to uncertainty because it involves judgments on many variables that cannot be precisely assessed, including reserves/resources, future oil and
gas production rates, the costs associated with producing these volumes, access to product markets, product prices and the potential impact of fiscal/regulatory changes.

▪ The statements and opinions attributable to RISC are given in good faith and in the belief that such statements are neither false nor misleading. In carrying out its tasks, RISC has considered and
relied upon information obtained from DRMIRS as well as information in the public domain. The information provided to RISC has included both hard copy and electronic information
supplemented with discussions between RISC and key DMIRS staff.

▪ Whilst every effort has been made to verify data and resolve apparent inconsistencies, neither RISC nor its servants accept any liability for its accuracy, nor do we warrant that our enquiries
have revealed all of the matters, which an extensive examination may disclose. In particular, we have not independently verified property title, encumbrances, regulations that apply to this
asset(s). RISC has also not audited the opening balances at the valuation date of past recovered and unrecovered development and exploration costs, undepreciated past development costs
and tax losses.

▪ We believe our review and conclusions are sound but no warranty of accuracy or reliability is given to our conclusions.

▪ Our review was carried out only for the purpose referred to above and may not have relevance in other contexts.
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a) The Client acknowledges and agrees that any advice or opinion provided by RISC is for the sole benefit of the Client and, except in accordance with this clause, may not be relied upon by any third
party.

b) The final Report, any advice, opinions or other deliverables provided pursuant to the Contract (Deliverables), and the intellectual property contained therein remains the property of RISC.
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iii. it is clear to the recipients or audience of the presentation or report that the information is not provided on a reliance basis.
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Have we got our sums right?

20 TWh = 200 Bscf @ reservoir conditions

▪ Assumptions:

– hydrogen energy density of 141.86 MJ/kg

– hydrogen density at STP of  0.08988 kg/m

– FVF of 50

▪ 1 TWh = 3,600,000,000 MJ = 0.282 billion cubic metres = 9.97 Bscf @ 
STP

▪ 20 TWh = 200 Bscf @ STP

Katriona Edlmann May 2021

Our sums seem to be inline with UK hydrogen storage requirements (222.5 Bscf @ STP)



Findings

▪ The global subsurface hydrogen storage industry is at an embryonic stage.

– Subsurface storage of ‘pure’ hydrogen is limited to a handful of caverns manufactured by dissolving the salt by pumping water.

– There are currently no depleted oil or gas fields used to store ‘pure’ hydrogen

– There are no examples of aquifers, underground mine sites or tunnels used for hydrogen storage

▪ Despite the infancy of the industry, there are many published articles related to hydrogen as it will become a major enabler for net zero GHG emission aspirations and targets.

– The material covers how the hydrogen industry developing, progress and aspirations of various countries, what subsurface sites are being considered, technical challenges and risks

– There is very limited information directly related to the potential of depleted oil and gas fields in Western Australia

▪ Several globally significant renewable energy sites are currently being considered in WA all of which have the intent to produce hydrogen, with some of it being converted into ammonia

– The largest is the Western Green Energy Hub on the South Coast, covering 15,00 km2 with a plan to produce 50 GW energy

– The second largest is the Asian Renewable Hub in the East Pilbara. The proposed project will cover an area of 6,500 km2, cost an estimated $36 B and produce 26 GW.

▪ Despite these large projects, RISC estimates that only small volumes of renewable hydrogen will be required to be stored on a transitory basis in the context of depleted oil and gas fields

- the maximum storage requirement would be in the order on 10 Bscf, which could be much less in reality

▪ The small size has a bearing on the ideal storage method. Salt caverns are the most robust means of storing hydrogen and have been proved to work.

– By far, the focus of hydrogen storage sites globally is in salt caverns, due very low permeability needed to contain hydrogen and solubility in water allowing relatively easy creation

– The salt acts as an excellent seal, the caverns can be customised to operational requirements, they have a relatively high recovery and a recharge time in the order of days/weeks.

– The drawback is they need access to large amounts of water in their manufacture and need a means to dispose of the generated brine.

▪ Storing hydrogen in porous media (depleted gas and oil fields or aquifers) presents several challenges and remains unproven.

– The physical behaviors and properties of hydrogen are different than natural gas; it is more chemically reactive which may impact reservoir quality, flow behaviour and seal capacity.

– Hydrogen is also an energy source for subsurface microbial processes which can turn the hydrogen into methane or hydrogen sulphide, e.g. Lobodice, Czech Republic, where approximately
half of the hydrogen in stored town gas (45-60% H2) was transformed into methane or hydrogen sulfide.

– The size of the site is fixed and cannot be customised to operational requirements (so in all probability will have a relatively low recovery) and a recharge time in the order of months

▪ We expect the depleted oil and gas fields will have many technical challenges, but Canning Basin salt could provide a good opportunity if environmental concerns can be addressed



…but storing hydrocarbon gas in salt caverns is very common…. 
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Global gas storage sites 

Germany UK USA

Turkey

▪ 140+ projects
▪ 17 countries
▪ Key countries are Germany, USA, Turkey and UK

UNECE Resource management week 2021

General rule seems to be required storage is 10—20% of annual production

Global:
• 2019 gas demand: ~3,986 bcm1 (140,764 bcf)
• 2019 gas storage market size: ~483 bcm2 (17,057 bcf)
• Ca. 10% of demand in storage

EU:
• 2019 gas demand: ~470 bcm3 (16,598 bcf)
• 2019 gas storage capacity: ~105 bcm4 (3,708 bcf)
• 2019 storage levels; ~90%5

• Ca. 20 – 22% of demand in storage

Hydrogen – OUTLOOK 2030/2050
Key drivers for storage
• Variable production renewable vs demand (peak)
• Heating (seasonal demand)?
• Arbitrage, Import dependency?

EU 20306:
• Hydrogen demand 481 – 665 TWh

(5,662 – 7,710 bcf)7

• Assumption 10 – 20% storage: ca. 16 bcm – 44 bcm
(566 – 1,542 bcf) 7

EU 20506:
• Hydrogen demand 780 – 2,251 TWh

(9,182 – 26,498 bcf) 7

• Assumption 10 – 20% storage: ca. 26 bcm – 150 bcm
(918 – 5,297 bcf) 7

bcm = billion cubic metres
bcf = billion cubic feet

1) IEA 2020: Natural Gas Information: Overview
2) Grand View Research 2020: Natural Gas Storage Market Size, Share & Trends Analysis Report
3) Statista 2020: Natural gas consumption in the European Union from 1998 to 2019
4) GIE gas storage database (dec. 2018)
5) EC –DG Energy 2019: Quarterly Report Energy on European Gas Markets
6) FCH-JU 2019: Hydrogen Roadmap Europe
7) Assumes Hydrogen energy density of 120 MJ/kg and 0.08988 kg/cubic m – no compression
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Underground Storage of Hydrogen: 
Mapping out the Options for Australia

K. Michael, J. Ennis-King, J. Strand, R. Sander, C. Green

21st July 2021



Project background

Widespread adoption of hydrogen in Australia as an energy carrier will require 
storage options to buffer the fluctuations in supply and demand, both for 
domestic use and for export. 

Once the scale of storage at a site exceeds tens of tonnes, underground 
hydrogen storage (UHS) is the preferred option for reasons of both cost and 
safety.

The objectives of the project were to:

• Review global UHS experience and technologies

• Identify the most suitable options for UHS in Australia

• Estimate the scale of prospective storage capacity on a regional scale



Characteristics of different energy storage technologies

(European Commission, 2017)

Estimated energy storage capacity of natural gas facilities and pipeline in comparison 

to other storage options in Australia

(www.energynetworks.com.au/).



Global state of UHS

• H2 is largely produced from steam methane 
reformation and used in chemical industries/refining

• Future initiatives are often looking at successively 
adding H2 to the existing gas network before 
renewable energy production has sufficient market 
penetration.

• Salt caverns are currently the only option used 
commercially for pure H2 storage

• UHS in porous formations is limited to:
• ‘Town gas’ (H2, CH4, CO, etc.)

• Pilot projects in Austria and Argentina* (H2/CH4 blending in 
gas fields)

• Research is focussed on UHS in gas fields & aquifers
• Geochemical reactions

• Microbial effects

• Loss of H2 to reservoir due to diffusion & leakage

Type % 

H2

Depth 

(m)

Volume 

(m3)

Capacity 

(GWh/PJ)

Teesside, UK Salt 

cavern

85 400 3 x 70,000 35/0.13

Spindletop, Texas Salt 

cavern

95 1500 906,000 278/1

Clemens Dome, Texas Salt 

cavern 95 

850 580,000 85/0.3

Moss Bluff, Texas Salt 

cavern   

95 1200 566,000 80/0.29

Beynes, France Aquifer 50 430

Ketzin, Germany Aquifer 62

Lobodice, Czech Aquifer 50 430

Bad Lauchstaedt, 

Germany

Salt 

cavern

820

Kiel, Germany Salt 

cavern

60

–

64

1330 32,000

Diadema, Argentina 

Hychico *

Natural 

Gas 

10 850 750,000

Underground Sun Storage, 

Voecklerbruck, Austria* 

Natural 

Gas 

10 1000

Panfilov, 2016; and data from company websites



Analogue to underground gas storage (UGS)

Storage 
facility

Operator State Depth 
(m)

Inj. Capacity 
(TJ/d)

Withdrawal 
(TJ/d)

Storage 
capacity 
(PJ)

UHS
capacity

(PJ) (kt)

Ballera
Chookoo

Santos Qld 20 40 11 3 25

Iona Lochard 
Energy

Vic 1300 155 500 23.5 6.3 53

Moomba Santos SA 2400 110 30-120 85 23 191

Newstead Armour 
Energy

Qld 1450 8 7.5 2.0 0.5 4.4

Roma GLNG Qld 1000 105 58 54 15 122

Silver 
Springs

AGL Qld 1900 16 20 46 12 104

Newcastle 
LNG

AGL NSW 14 120 1.5 0.4 3.4

Tubridgi AGIG WA 550 90 60 57 15 128

Mondarra APA WA 2700 70 150 15 4 34

• Approximately a total of 670 UGS facilities 
exits globally:

• Salt caverns: 104

• Depleted fields: 492

• Aquifers: 75

• Most UGS sites are in North America (450) 
& Europe (142)

• Australia has 9 UGS facilities, all in 
depleted gas fields

• Moomba is the biggest Australian UGS site 
with a gas storage capacity of 85 PJ, which 
is volumetrically equivalent to 23 PJ H2

storage capacity



Options for UHS

www.entrepose.com/en/geostock-sandia/expertise/

Decreasing TRL level

Sedimentary basins Crystalline (‘hard’) rock

Buried pipes/
wells



UHS options – salt caverns

Options for creating caverns in salt formations (Nathan, 2013;

www.theengineer.co.uk/ underground-revolution-hydrogen-storage-for-flexible-generation/)

• Salt caverns are currently the only UHS option used 
commercially.

• Good containment and injectivity/producibility
• The capacity of salt caverns is determined by geo-

mechanical safety aspects, and parameters to be 
considered are salt thicknesses in the hanging wall and 
foot wall & cavern shape.

• Domal structures: up to 210 GWh,
• Bedded salt: 65 and 160 GWh

• Largest UHS facility in the world, Spindletop in Texas, has 
a working volume equivalent to approximately 277.8 GWh 
(1PJ).

• Brine disposal environmental issues & comparatively 
higher development costs compared to storage in porous 
reservoirs.  

• Lack of salt cavern storage experience in Australia
• Plans for CSG-to-LNG projects in the 500 m thick salt at 

approximately 2000 m depth in the Adavale Basin (QLD).

http://www.theengineer.co.uk/%20underground-revolution-hydrogen-storage-for-flexible-generation/


UHS options – porous formations (hydrocarbon fields & aquifers)
• Depleted gas fields were used historically for the storage of ‘town gas’ (CH4, H2, CO,…).
• Recent pilot projects blending H2 with CH4 in natural gas storage sites in Austria and Argentina.
• Lower density (8- 10 times) and viscosity of H2 relative to CH4 would result in 2.4 to 2.7 times higher withdrawal rates, 

which partly compensate for the lower energy content of H2 (3-4 times lower than CH4), resulting in an energy 
throughput of 0.7 to 0.8 times that of CH4.

• Issues include:
• Hydrogen losses due to diffusion or dissolution in water, or mixing with cushion gas
• Contamination with reservoir gas or due to geochemical and microbiological effects, i.e. H2S

Pros Cons

• No potential for contamination with 

reservoir gas,

• Less potential for microbial activity due to 

the lack of a carbon source,

• No conflict with timing of gas production

• Need for finding a structural closure with a 

competent seal,

• Additional characterisation, data collection 

and analysis requirements.

• Potential conflicts with groundwater

Aquifer versus gas reservoir storage



• Focus is on prospective storage capacity

• Important to emphasise that it’s a technical 
geological assessment

▪ Doesn’t imply social or environmental acceptability

▪ Doesn’t imply commerciality in any specific 
location

▪ Prelude to a much more detailed phase of site 
work. 

• Key outcome is that the scale of prospective storage 
is much greater than potential demand for UHS – so 
only a few sites would be needed in each region.

Australian UHS assessment



Energy landscape in Australia

Annual energy production
(incl. 80% export)



Storage capacity requirements for different hydrogen usage

Hydrogen usage Storage capacity requirement in PJ (kt H2)

Australia total Per project

Stabilisation of 

electricity network1

1.26 – 1.62 (10 – 13) 0.00036 – 1.26

(0.003 – 20)

Security of gas network2 ~300 (2,420) 0.25 - 25 

(2 – 200)

Export3 ~300 (2,420) 1.25 - 12.5

(10 – 100)

Total ~600 (4,840)
1based on AEMO ‘neutral’ scenario requiring 350-450 GWh energy storage by 2040 and 50% conversion 

efficiency; site storage ranges from 100 MWh (current battery storage at wind/solar farms) to 350 GWh 

(Snowy 2.0)
2based on gas storage capacity in existing UGS facilities in 2020. 
3assuming 1 week storage of 2019 annual energy export (15,900 PJ) and weekly hydrogen production 

from large-scale projects of 10 to 100 kt H2.



Storage in salt caverns
Name Adavale Amadeus Canning Carnarvon Officer

Basin area (km2) 60 000 140 000 430 000 300 000 410 000

Area of 

evaporites (km2)

8 000 120 000 200 000 1 300 100 000

Sediment 

thickness (km)

5 14 12 7 10

Evaporite 

thickness (m)

900 225* 800 37 70*

Minimum depth 

to evaporites 

(m)

900 surface 688 1130 surface

Formations Borree Salt 

Member

Gillen Fm 

(Bitter Springs 

Gp)

Carribuddy Gp

(Worral Fm)

Yaringa Salt 

Member (Dirk 

Hartog Fm)

Browne Fm 

(Buldya Gp)

Age Devonian Tonian Ordovician Silurian Tonian

Minerals Anhydrite, 

halite, sylvite

Halite, gypsum, 

anhydrite, 

dolomite

Halite, dolomite, 

anhydrite, barite

Halite, anhydrite, 

dolomitic anhydrite, 

sylvite

Gypsum, 

anhydrite



Storage in gas fields – capacity estimation based on gas reserves

EH2 (PJ) = 0.27 * ECH4

= 0.27* VCH4 (m3) * 0.0732 kg/m3 * 53.4*10-9 PJ/kg 

Basin

Number of gas fields UHS capacity (PJ)
Total >0.25 PJ Min Max Median Sum

Gippsland 41 39 0.1 1045 26 4837

Otway 37 31 0.0002 99 2.3 484

Eromanga 258 195 0.00002 365 1.3 2,805

Bowen- Surat 115 79 0.0001 29 0.7 316

Bonaparte-

Browse

7 6 0.2 1800 823 5,507

Carnarvon 116 101 0.02 3748 7.9 23,710

North Perth 20 14 0.03 135 1.1 205

Amadeus 3 3 2.4 80 131

Total 598 460 1.8 37,996



Storage in aquifers

Basin

CO2 Storage Capacity (Gt) Suitability 

score

P10 P50 P90

Gippsland (offshore) 30.1 51.0 80.3 0.91

Gippsland (onshore) 0.7 1.0 1.4 0.57

Bass 12.7 19.1 26.1 0.61

Torquay 1.6 22 2.9 0.56

Otway (East) 8.4 14.5 21.0 0.64

Otway (West) 4.5 11.0 23.7 0.58

Eromanga (SA) 11.6 26.8 52.5 0.80

Cooper 4.1 7.9 14.7 0.68

Bowen 1.6 3.3 5.9 0.66

Surat 6.1 10.3 16.1 0.59

Sydney 0.4 0.8 1.6 0.50

Darling 2.6 7.2 16.4 0.58

Gunnedah 0.4 0.8 1.6 0.42

Galilee 7.5 14.0 21.9 0.62

Clarence-Morton 2.9 5.5 10.2 0.51

Denison Trough 1.7 3.0 4.9 0.59

Roma Shelf 0.1 0.1 0.2 0.64

Bonaparte (NT 32.2 55.3 88.0 0.62

Browse 7.0 11.3 16.3 0.73

Canning (onshore) 16.5 33.3 59.8 0.61

Canning (offshore 23.5 37.7 56.0 0.55

Carnarvon (North) 25.5 48.5 89.3 0.78

Carnarvon (South) 11.1 22.8 40.1 0.50

Vlaming 0.2 0.3 0.4 0.64

North Perth (onshore) 1.4 2.9 5.3 0.63

Total 226.6 417.0 701.9
• Based largely on the assessment of CO2 aquifer storage 

in Australian basins

• Volumetrically equivalent H2 storage capacity would be orders of magnitude less because 
UHS requires structural traps, and their volumes/occurrences are not well mapped.



Storage in engineered mines

Underground mines may provide storage options where 
sedimentary basin storage options are not available



Conclusions- UHS options in Australia

• Various Australian basins contain salt 
deposits suitable for the creation of 
storage caverns:

• Canning Basin

• Adavale Basin

• Amadeus Basin

• (Officer Basin)

• Not necessarily in areas of hydrogen 
production/processing

• No previous experience with salt 
cavern storage in Australia



Conclusions- UHS options in Australia

• Depleted gas fields appear to be the 
most widely available UHS option in 
Australia with more than sufficient 
prospective capacity

• Onshore gas fields in potential 
hydrogen hub areas include:
• North Perth Basin (200 PJ)

• Otway Basin (40 PJ)

• Eromanga Basin (2,800 PJ)

• Bowen/Surat Basin (300 PJ)

• Amadeus Basin (130 PJ)

• The total prospective UHS capacity is 
38,000 PJ (~310,000 kt H2)

• Total energy production in Australia is 
~ 20,000 PJ, Moomba UGS: ~ 23 PJ



Conclusions- UHS options in Australia

• The main demand for UHS will 
probably be for the purpose of export 
or H2 replacing domestic natural gas 
usage

• Possibly niche opportunities for 
electricity grid stabilisation if other 
energy storage (e.g. pumped hydro, 
batteries) infeasible

• Alternative UHS options to be 
considered (if salt not available and 
gas field storage proves technically 
challenging) are: 
• Aquifers

• Hard rock mine shafts (lined) 

• Buried pipes

D
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Future work

Implementing UHS in salt caverns Australia requires:

• a more detailed mapping and characterisation of known salt deposits,

• exploration for new salt deposits,

• UHS pilot/demonstration in Australian salt caverns

For gas fields, the actual capacity, or dynamic storage capacity, would need to be confirmed, 
initially through reservoir simulations, but ultimately by performing pilot hydrogen injection and 
production experiments. Specifical aspects to be tested include:

• Amount of cushion gas needed, mixing with residual hydrocarbons

• Interaction of hydrogen with seal – capillary pressure (containment), diffusion, reaction

• Interaction of hydrogen with reservoir – relative permeability, wettability, geochemistry



Future work

Modelling 

• Accurate equations of state for hydrogen-gas mixtures and brine

• Code comparison for simulating UHS in depleted fields and aquifers

• Coupling with microbiology and geochemistry

Microbiological effects on stored hydrogen

• Characterisation of microbes, and lab studies of effects on hydrogen-gas mixtures

• Calibration of theoretical models for microbial effects on hydrogen

Techno-economics

• site-specific comparisons of the total costs of supply, transport and storage

• Compare salt caverns, depleted gas fields and aquifers for specific conditions



Australia’s National Science Agency

Thank you



SECURE LARGE-SCALE GEOLOGICAL STORAGE 
OF HYDROGEN: The HyStorPor Project

1

Katriona Edlmann 

The University of Edinburgh
katriona.edlmann@ed.ac.uk

HyStorPor team: Niklas Heinemann, Stuart Haszeldine, Mark Wilkinson, Chris McDermott, Ian Butler, Ali Hassanpouryouzband, Eike Thaysen, Julien Mouli-Castillo, 
Jonathan Scafidi, John Low (all UoE). Leslie Mabon (SAMS),Romain Viguier (SCCS), Gillian Pickup (HW), Sam Krevor (Imperial)

https://doi.org/10.1039/D0EE03536J



Scales and deliverability of hydrogen storage

2

From https://doi.org/10.1016/j.apenergy.2020.116348 (julien.moulicastillo@ed.ac.uk) 

From https://doi.org/10.1021/acsenergylett.1c00845 (hssnpr@ed.ac.uk)  



HyStorPor Goals: Fundamental understandings

To identify if biological and chemical reactions between the rock, fluids, 
cushion gas and hydrogen could compromise storage.

To determine what flow processes will influence hydrogen migration 
and trapping during injection and withdrawal.

Reservoir simulations to estimate what volumes of hydrogen can be 
stored and recovered from storage sites of varying scales.

To clarify what citizens and opinion shapers think about hydrogen storage.

3

https://blogs.ed.ac.uk/hystorpor/



Microbial reactions: life limits for site screening

4
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Thaysen et al. https://eartharxiv.org/repository/view/1799/ (eike.thaysen@ed.ac.uk)

The most important factors controlling growth are salinity and 
temperature.

Storing hydrogen at temperatures >122 °C and >4.4 M NaCl 
eqv salinity reduces the risk of H2 loss

6 out of the 47 fields studied are unfavourable to microbial 
growth  

Limitation of our analysis is that the data is based on cultivated 
species and studies on the microbial ecology – not directly from 
hydrocarbon reservoirs.

https://eartharxiv.org/repository/view/1799/


Geochemical reactions: no significant reactions

• Hydrogen batch reaction vessels: Pressures 
of 60 MPa and temperatures up to 80oC

• We have tested over 200 different samples 
from a wide range of sandstones, caprocks 
and well cements. 

• Results show there is minimal geochemical 
reactivity with hydrogen under storage site 
conditions

5

Ali Hassanpouryouzband (hssnpr@ed.ac.uk)



Hydrogen caprock sealing

• Column heights reflect the sealing 
capacity of any caprock.

• Column height conversion factor 
calculated to convert known 
natural gas column heights to 
hydrogen column heights.

• Hydrogen can be stored at a higher 
pressure in the reservoir than 
methane.

6

Density IFT ratio Wettability

https://pubs.acs.org/doi/10.1021/acsenergylett.1c00845Ali Hassanpouryouzband (hssnpr@ed.ac.uk)

https://pubs.acs.org/doi/10.1021/acsenergylett.1c00845


Hydrogen flow visualisation
• Bespoke 5mm diameter X-ray 

transparent hydrogen flow cell.

• Clashach sandstone.

• Imaging experiments to determine:
– capillary pressure at different saturations. 

– relative permeability (steady and non steady state).

– contact angles, interfacial curvatures and pore size 
distributions.

• Diamond Lightsource Synchrotron 
experiment planned for September 
2021. 

7

Eike Thaysen (eike.thaysen@ed.ac.uk) 

Brine imbibition Hydrogen



Pore scale modelling
• Lattice Boltzmann simulations 

using the Shan-Chen pseudo 
potential model with a D2Q9
configuration.

• Verified against Poiseuille flow 
and two-component 
simulation for capillary rise 
phenomenon in a capillary 
tube.

• Confirm that capillarity will 
have a major influence on the 
flow behaviour of hydrogen. 

8

H2

Water

Mehrdad Vasheghani Farahani (mv47@hw.ac.uk) and Ali Hassanpouryouzband (hssnpr@ed.ac.uk)

Evenly distributed large pore throat diameters Pore throat diameter reduces towards top



Reservoir modelling: Saline Aquifer

• Pressure dissipation determines the injectivity 
and productivity of hydrogen in a saline aquifer.

• Low density of hydrogen requires high injection 
rates 

• Cushion gas controls both injectivity and 
productivity in hydrogen storage.

• The more cushion gas there is, the more 
hydrogen can be injected and produced, as long 
as the pressure has enough time to dissipate 
after the cushion gas injection.

9
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Niklas Heinemann (N.Heinemann@ed.ac.uk)



Salt Cavern Storage
• Zechstein Internal 

variability.

• Salt integrity to
hydrogen.

• Cavern capacity 
estimates.

• Aldborough gas storage 
to be repurposed for 
hydrogen

10



No showstoppers… so far…
✓ Biological site screening: We suggest that storage reservoirs over 122 C or with salinities above 4.4 M NaCl 

equivalent will be less favourable to microbial growth.

✓ No significant geochemical reactions have been observed in our reactive experiments.

✓ Column height calculations indicate hydrogen will have a higher column height than methane and that this 
increases with increasing depth.

✓ Developed a online tool to provide high accuracy thermodynamic property estimations of hydrogen 
mixtures (CO2, N2, CH4, natural gas) over a range of temperatures and pressures. 
https://www.nature.com/articles/s41597-020-0568-6

✓ Pore scale modelling confirms the importance of capillarity. 

✓ Cushion gas will play an important role in controlling both injectivity and productivity during hydrogen 
storage

✓ Significant storage capacity in depleted gas fields, minimising subsurface competition with other low 
carbon geoenergy applications. https://doi.org/10.1016/j.apenergy.2020.116348 and 
https://doi.org/10.1021/acsenergylett.1c00845

11

https://www.nature.com/articles/s41597-020-0568-6
https://doi.org/10.1016/j.apenergy.2020.116348
https://doi.org/10.1021/acsenergylett.1c00845
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Exploring for the Future Expansion

Hydrogen Module (2021 -2024)

Andrew Feitz on behalf of the hydrogen team
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© Commonwealth of Australia 

(Geoscience Australia) 2021

Hydrogen Economic Fairways Tool (HEFT) -

Australia very prospective for renewable and CCS 

hydrogen

Solar Wind Gas + CCS

Storage is the missing bit



© Commonwealth of Australia 

(Geoscience Australia) 2021

Hydrogen Economic Fairways Tool

Version 1 – release on 24 March 2021 

Version 2 – updates (release in early 2022)

• incorporation of pumped hydro + wind/solar

• include battery storage

• hydrogen storage options (proximity to depleted gas /salt)

• grid connection

• different end product (e.g. ammonia, liquid H2)

• improved CO2 storage data

• hot sedimentary aquifer geothermal?
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Location of thick salt vs hybrid wind/solar

Bright green shows extent of thick onshore halite

Mapping Australia's hydrogen future - release of the Hydrogen Economic 

Fairways Tool
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Location of depleted gas fields vs hybrid 

wind/solar
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Exploring for salt prospectivity through EFTF

• $125 million expansion of 

the Exploring for the Future 

program

• Looking for new discoveries of 

groundwater, conventional and 

unconventional oil and gas, 

minerals

• Also exploring for salt

http://www.ga.gov.au/eftf
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Exploring for salt through EFTF – remote sensing

Looking for salt using 

remote sensing data & 

machine learning, e.g.

- gravity

- gamma-ray 

- surface geology 

- terrain derivatives 

- magnetics

- satellite imagery 

Mapping Australia's hydrogen future - release of the Hydrogen Economic 

Fairways Tool

Jurgurra Ck, WA
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Exploring for salt through EFTF – remote sensing

Looking for salt using 

remote sensing data & 

machine learning, e.g.

- gravity

- gamma-ray 

- surface geology 

- terrain derivatives 

- magnetics

- satellite imagery 

Mapping Australia's hydrogen future - release of the Hydrogen Economic 

Fairways Tool
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Natural 

(geologic)

hydrogen

Boreham et al (2021) APPEA



Needed or lifeline of an 
Industry??

Underground Energy
Storage
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RAG Austria AG

Company Profile and
Vision

• Sustainable Energy Supplier
• Among leading technical Underground 

Gas Storage Operators
• State of the art facilities
• Storage volume 66 TWh (~6 bcm)
• Unload capacity 30 GW

• Follow the vision to serve the renewables 
with our existing assets by constant 
improvement and innovation
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2030+ residual scenario for electricity in AT

+ 12.000 MW 
lasting for months

5

- 8.000 MW 
lasting for months

+ 12.000 MW 
lasting for months

INPUT data: 2030+ vs. 2017 @15 minute intervals:
• Demand: +30%  (~63 to 81 TWh/a)
• RES generation : Wind x3, Solar x20, Hydro x1 (~ 41 auf 80 TWh/a)

=> Big scale seasonal storage needed



European Potential for Wind Energy 
Generation
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European Potential for Solar Energy 
Generation
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Motivation
• Gas Storage is Energy Storage

• Gas Storage is ‘invisible‘ and ‘available on demand‘-Energy

• Gas has an existing infrastructure in many regions of the world

• Gas can be greened from 0-100% without changing the system

Goals of the Project
• Demonstration of Storability of renewable gases in Gas Storage facilities

• Research on effects of 10% hydrogen admixtures in existing Gas Storage 
Facilities

Partners

Development of the 
Underground Sun Storage Project
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WP 7: Design and Construction 
of Testbed

WP 8: Testbed Operation
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Underground Sun Storage

11

• Renewable Energy can be stored as 
Hydrogen in underground gas 
reservoirs.

• 10 % share of H2 tested (partial 
pressure up to 75 bar(a))

• Project confirmed scale up potential to 
RAGs commercial facilities 

• Open: Assignability to other geological 
reservoir settings

• Key Parameters Identified
• 100 % Hydrogen in natural gas 

reservoirs is the next development 
objective and will be done in the 
project USS2030 (already started)

• https://www.underground-sun-
storage.at/

Power 
(Strom)

https://www.underground-sun-storage.at/
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Convert a one way industry into a 
sustainable cycle industry
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But why??
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WP 6: Design, Construction and 
Operation

In-Situ Reservoir Batch Experiment

WP 7: Design, Construction and Operation

In-Situ Reservoir Cycle Experiment
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Watersampling



In-situ Field 
Experiments

RISC Workshop |  Markus Pichler  |  2021 
07 21
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• Construction and Commissioning 
finished

• 5 “major” Batches (WGV ~580. 
kNm³)

• 10 vol.% H2; 2,5 vol.% CO2

• 9 “minor” cycles (WGV ~40. kNm³)
• 20 vol.% H2; 5 vol.% CO2

• Measurement
• Surface Flow meters and GC
• THP, BHP, BHT
• Water Samples
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Second Well for Cycle Experiments



Conversion in the reservoir is possible

Different operation scenarios are under investigation

Gas mixing needs to be addressed to forecast the 
composition of the product gas

Safe storage of CO2 and H2 in a subsurface reservoir is 
possible

One Follow up project already approved and running 
(USC FlexStore) 

Second Follow up Project C-CED starting in fall

Conclusion

RISC Workshop |  Markus Pichler  |  2021 07 21 18



Contact

Markus.pichler@rag-austria.at
T +43 (0)50 724-5346
RAG Austria AG
Schwarzenbergplatz 16
A-1015 Vienna

www.rag-austria.at
www.underground-sun-stroage.at
www.underground-sun-conversion.at

Reservoir Engineer Subsurface Storage Development

Markus Pichler

Project Partners:

You can’t spell
storage without
RAG!

http://www.rag-austria.at/
http://www.underground-sun-storage.at/
http://www.underground-sun-conversion.at/
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Further details of geoscience products are available from:

Information Centre 
Department of Mines, Industry Regulation and Safety 
100 Plain Street 
EAST PERTH WA 6004 
Phone: (08) 9222 3459   Fax: (08) 9222 3444
www.dmp.wa.gov.au/GSWApublications

Hydrogen Storage Potential of Depleted Oil  
and Gas Fields in Western Australia
Literature Review and Scoping Study

Report 221

RISC

Further details of geoscience products are available from:

First Floor Counter 
Department of Mines, Industry Regulation and Safety 
100 Plain Street 
EAST PERTH WA 6004 
Phone: (08) 9222 3459   Email: publications@dmirs.wa.gov.au
www.dmirs.wa.gov.au/GSWApublications

The Government of Western Australia has 
developed a renewable hydrogen strategy with 
the vision that Western Australia will become 
a significant producer, exporter and user of 
renewable hydrogen. Western Australia has 
outstanding potential for renewable energy, 
with an abundance of sun, wind and space. 
The Western Australian Renewable Hydrogen 
Roadmap (November 2020) includes the 
evaluation of utilizing depleted oil and gas 
fields for hydrogen storage. A key aspect is 
the ability to store the hydrogen on a transitory 
basis and to be able to recover the hydrogen in 
high concentrations. 

The Hydrogen Storage Potential of Depleted Oil 
and Gas Fields in Western Australia Literature 
Review and Scoping Study was funded through 
the Western Australian Government’s COVID-19 
Response ‘Renewable Hydrogen Initiatives’, 
which is administered by the Department of 
Jobs, Tourism, Science and Innovation. This 
Report was prepared by RISC and includes 
a high-level review of other examples of 
underground hydrogen storage such as 
aquifers, salt caverns, underground mine sites and tunnels.

RISC has screened 23 onshore depleted gas and oil fields in Western Australia 
for suitability to meet the storage need of renewable hydrogen. The company has 
identified seven fields as good candidates for hydrogen storage projects along the 
west coast of Western Australia. RISC’s mapping of renewable hubs relative to the 
subsurface sites shows that there is ample depleted oil/gas field storage capacity in 
the Perth Basin.

mailto:publications@dmirs.wa.gov.au
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