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Executive summary

Hot Dry Rocks Pty Ltd (HDR) was commissioned by the Department of Mines and
Petroleum (DMP), Western Australia, to appraise the geothermal potential of four
basins in Western Australia (the Browse, Bonaparte, Carnarvon and Officer basins)
as part of Project DMP0260909.

A total of 74 wells were assessed; comprising 45 wells in the Carnarvon Basin, 17
wells in the Officer Basin, 10 wells in the Bonaparte Basin and two wells in the

Browse Basin.

This report focuses on the Western Australia portion of the Officer Basin, referred to
as the Western Officer Basin.16 wells were assessed in detail for heat flow modelling
and temperature prediction at depths to 5,000 m. Of these 16 wells, only 14 had

sufficient data to enable the modelling of heat flow.

The principle findings of this report are:-

e Measured rock thermal conductivities for 40 core samples collected from the
Western Officer Basin range from 1.25-5.54 W/mK. These data were crucial
for the development of 1D heat flow models to predict the depth to selected
isotherms. The majority of the samples in the deeper section of the Officer
Basin were collected from Empress 1A. It is debatable as to how

representative these lithologies are of the wider Western Officer Basin.

e Apparent surface heat flow in the Western Officer Basin ranges from 33—
95 mW/m? with a median value of 52 mW/m?. This value is lower than the
Australian median value of 64.5 mW/m? from the global heat flow database
and considerably lower than the Perth and Canning basins median values of

76.5 mW/m? and 68 mW/m?, respectively, recorded in previous HDR reports.

e The Western Officer Basin covers an area of approximately 300,000 km?. The
paucity of geological and geophysical data in large swathes of the Western
Officer Basin results in the geothermal prospectivity of these areas remaining
unknown. Existing water and minerals bores may provide additional data and

HDR suggests a concerted effort to locate all bores. DMP should also
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consider collecting temperature data from minerals and petroleum companies

that are planning new bores.

e Those parts of the Western Officer Basin for which data exist suggest
decreasing surface heat flow towards the centre of the basin. The lowest
apparent heat flow (<60 mW/m?) is centred in the eastern Gibson, Yowalga
and northern Lennis areas. Areas of higher heat flow appear to lie on the
margins of the basin, most notably the Savory area and Waigan area.
Elevated apparent heat flow in the Savory area is quite likely an artefact of the

gridding process.

e The 150°C isotherm appears to lie at greater than 5,000 m depth over most of
the Western Officer Basin, implying limited potential for EGS in current

economic circumstances.

e The 150°C isotherm apparently coincidents in most areas with
Mesoproterozoic basement, which is highly unlikely to preserve any natural
permeability, thus negating the potential for Hot Sedimentary Aquifer (HSA)

geothermal systems.

e There is a lack of regional-scale stress data, which means that no conclusions
can be drawn in regards to the potential effects of the local in situ stress field
on EGS developments. Clarification of this issue will require that the local

stress field be determined at individual well locations.

e HDR recommends that the heat generation potential of basement rocks be
further investigated by the DMP.
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1. Introduction

The Department of Mines and Petroleum (DMP) provided Hot Dry Rocks Pty Ltd
(HDR) with basic data for 74 wells in the Bonaparte, Browse, Carnarvon and Officer
basins (Figure 1). Data included scanned log headers, bottom hole temperatures
(BHTSs), geological and geophysical reports, and other relevant data. HDR utilised
these data and collected rock samples to provide new rock thermal conductivity data
to use in the determination of apparent heat flow across the four basins as part of the

overall assessment.

HDR was commissioned to utilise the supplied data to address the Scope of Services
(Schedule 2; Section 1.2 of the Request For Quote DMP0260909) for the following

topics:-

determine depth of basement at the well locations

+ verify geothermal data and extrapolate temperature to the basement
» generate isotherm maps at 100°C, 150°C and 200°C

* identify basement lithology from existing geophysical data

» relate basement lithology at depth from the existing data

 calculate the heat generating capacity of the basement rock

HDR was also requested to compile and comment on the adequacy of data on the
current in-situ stress field in areas of potential Engineered Geothermal System (EGS)

interest.

This report focuses on the Western Australia portion of the Officer Basin, referred to
as the Western Officer Basin. An initial 17 wells were highlighted by DMP for this
study. HDR incorporated data from Kanpa-1 into a model of Kanpa-1A, so this report
relates to 16 wells (Attachment A). An additional 17 wells have been drilled in the
Western Officer Basin (Attachment B), but these are not reported on in this

document.

www . hotdryrocks.com
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Figure 1: Location of the Bonaparte, Browse, Carnarvon and Officer basins, Western Australia (individual basin
polygons modified from Geoscience Australia databases).
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2. Officer Basin Geological Setting

The Officer Basin (Figure 2) covers a total area of approximately 525,000 km?, of
which some 225,000 km? lies within South Australia (referred to as the Eastern
Officer Basin) and 300,000 km? within Western Australia (the Western Officer Basin).

This report focuses only on the Western Officer Basin.

125
130° -
135

Northern Territory

Western Australia

® KINTORE

WARBURTQON

@ WILUNA

Officer Basin

LAVERTON e

South Australia
® KALGOORLIE-BOULDER

Towns Basin Outline

: pasn i

Figure 2: Location of the Officer Basin (basin polygon modified from Geoscience Australia database).
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The Officer Basin is a large, episutural intracratonic basin. It is the southernmost and
westernmost of the Centralian Superbasin, a series of Neoproterozoic basins
including the Amadeus, Ngalia and Georgina basins (Walter et al., 1995).
Sedimentation within the Officer Basin commenced with initiation of a foreland basin
against an emergent Musgrave Complex. The main tectonic phase occurred during
the Areyonga Movement—approximately 750 Ma—which has been identified as the
central Australian response to breakup of Rodinia and separation of Laurentia from
Gondwana (Baillie et al., 1994; Apak and Moors, 2000).

2.1. Tectonic Framework

The Western Officer Basin is largely overlain by the Palaeozoic to Mesozoic
Gunbarrel Basin (Figure 3) The Table Hill Volcanics are regarded as the basal
sequence of the Gunbarrel Basin. For the purposes of this report, all references to
the Western Officer Basin include the stratigraphic architecture of the Gunbarrel

Basin.

A large extent of the southern portion of the Western Officer Basin extends beneath
the Cainozoic Eucla Basin (Figure 3). The northern and north-eastern portion of the
Officer Basin is bounded by the Paterson Orogen, Musgrave Complex and Canning
Basin, whilst the western and north-western margins abut the Pilbara and Yilgarn

cratons, and the Earaheedy and Collier basins.

The stratigraphic architecture of the Western Officer Basin is poorly constrained,
since there is a paucity of geological and geophysical data. Whilst a series of seismic
lines image the Yowalga area (Figure 3), elsewhere seismic data are sparse. Well
control in the Western Officer Basin is limited to just 33 petroleum and stratigraphic
wells—plus a number of shallow minerals bores—many of which are less than 500 m

deep (Figure 3).

www . hotdryrocks.com



T T T T
120° 122° 124° 126°

T
128°

Officer Basin under
Gunbarrel Basin
Officer Basin under
Eucla Basin

Mineral exploration drillhole
(some cored)

% Oil and gas show

Lamil
) Basin
';':Zgﬁ Throssell Range
| 500 Group
bal Arunta -
© Orogen Canning :
Basin
0
.¢,
undadijini 1 SAVORY
Co"i,er Akubra 1 Boondawari 1 REA
Basin
| 50 agoo
“ N GSWA Amad
. ) GIBSON maaeus |
Inlier Trainor 1 i
AREA Basin
Say Va[/On ussar
Oldham
@ -
- Scorplon Inlier 33?31
Basin MR Browne 1
9 Bro
Lo Earaheedy : @7 Browge Musgrave
i - o= Lungkar
Basin <% MR T bats S OMplex )
59)
Kanpad1/,
< i
E BMR Yowalga4 (= BIMR Yowalg , 3
> b g e Io] =
g F GS A
"TTI?21' o Empress TA |\$\7l, T_f\
TDa-4 % Lefihis 1
Yilgarn Craton 2 LENNIS WAIGEN
- 28° AREA AREA
D O BMR Neale 3 4
L — BMR Wanna 1
‘o .o o . BMR Neale 1A-1B TD\‘
. :._“" g BMR Neele 2"
N g weegy T
s Ty 0. geubilee 3
e ubilee 2. - - . .
) ) e Maspn'z._ '
- 30°
Eucla Basin ]
Albany—Fraser S
or T Orogen 200 km T
Basin L ] . . b .
v il 1 1 o /\lj\/A
I:I Officer Basin O Petroleum exploration well < Oil show Seismic line
Gunbarrel Basin O Stratigraphic well O Gas show

Figure 3: Regional tectonic setting of the Western Officer Basin (from D’Ercole et al., 2005).
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Data derived from the OZ SEEBASEV2 project (FrOG Tech, 2007) suggest the
sedimentary sequences within the Western Officer Basin thicken markedly towards
the southern margin of the Musgrave Complex, reaching a maximum thickness in
excess of 6,000 m where a number of discrete asymmetric depocentres have been
confirmed by data (Apak & Moors, 2000; Simeonova & lasky, 2005). Each tectonic
subdivision is currently referred to in a geographic sense; and five areas have been
delineated and studied in detail: Savory (Grey et al., 2005), Gibson (Moors and Apak,
2002; Grey et al., 2005; Simeonova & lasky, 2005), Yowalga (Apak and Moors, 2000;
Grey et al., 2005; Simeonova & lasky, 2005), Lennis (Grey et al., 2005; Simeonova &
lasky, 2005) and Waigan (D’Ercole et al., 2005; Grey et al., 2005).

The structural grain of the Western Officer Basin dominantly trends in a north-
westerly direction, parallel to the structural fabric observed in the Paterson Orogen
(Simeonova & lasky, 2005). Structural complexity is increased as a result of salt
mobilisation, with both vertical diapirism and lateral salt piercement into overlying

strata.

DMP has produced two cross sections through the Western Officer Basin, as shown

in Figures 4 and 5.

www . hotdryrocks.com
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2.2. Stratigraphic Architecture

The regional stratigraphic architecture of the Western Officer Basin (Figure 6) is

almost entirely derived from subsurface stratigraphic and petroleum datasets, as
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much of the basin is covered by a thin Cainozoic veneer. The various formations and
stratigraphic units were described by D’Ercole et al., (2005); Simeonova and lasky,
(2005); and Grey et al., (2005).

MA | AGE STRATIGRAPHY LEGEND
éc R e W
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Figure 6: Stratigraphy of the Western Officer Basin and overlying Gunbarrel Basin (modified from D’Ercole et
al., 2005; Grey et al., 2005). The Mundadjini Formation through to Brassey Range Formation is spatially re-
stricted to the Savory area.

www . hotdryrocks.com



11

3. Basement Investigations

This section provides information for the following topics:-
For the 16 wells to be assessed:-
» determine depth of basement at the well locations

+ identify basement lithology from existing geophysical data
3.1. Basement depth

Recorded actual basement intercepts in the Western Officer Basin (Attachment C)
were assessed in conjunction with the OZ SEEBASEV2 database (FrOG Tech, 2007)
to determine depth-to-basement’ for the 16 wells. These data are detailed in
Attachment D and shown on Figure 7. The actual basement intercepts recorded in

wells were given greater weighting over the OZ SEEBASEV2 dataset.

All available data suggest that Neoproterozoic basement reaches a maximum depth

in excess of 6,000 m in parts of the Western Officer Basin.
3.2. Basement lithology

Predictions of basement lithology are listed in Attachment D and shown on Figure 8.
Most were derived from basement lithologies intersected in nearby wells, with the
assumption that a similar lithology may be intersected within a 10 km radius (being
the approximate size of a small pluton). Others were derived from the continuation of
geophysical signatures (gravity and magnetics) from areas of known basement
composition. The exact nature of the basement of the Western Officer Basin remains

poorly constrained due to the small number of current basement intercepts.

! Rounded to the nearest 250 m.
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4. Heat flow modelling methodology

4.1. Introduction

1D conductive heat flow modelling allows for accurate extrapolation of temperature to
depth as it honours the thermodynamic principles of heat transfer. The depth to
which temperature can be extrapolated depends on the depth to which the
assumption of purely vertical conductive heat transfer holds true. The assumption
fails if a) there is a component of advective heat transfer via fluid flow, b) there is
appreciable lateral conduction of heat, or c) temperatures exceed about 300°C, at
which point radiation starts to play a role in heat transfer. This report assumes purely
vertical conductive heat transfer with internal heat generation over the modelled

depth intervals.

HDR was commissioned to investigate the thermal conditions of wells in the Western
Officer Basin based on existing temperature data. HDR used its proprietary 1D heat
flow modelling software to build heat flow models for each well for which adequate
data were available. Required data include downhole temperatures (corrected to
approximate equilibrated conditions where sufficient information is available) and
thermal conductivity data of intersected formations. Raw temperature and lithological

data were provided by the DMP.
4.2. Heat flow and limitations of 1D modelling

Surface heat flow is a measure of the flux of thermal power at surface and is a
function of the rate of heat generated within the crust plus heat conducted from

the mantle.

The principle aim of geothermal exploration is to locate anomalously high
temperatures at an economically and technically viable drilling depth. The thermal
state of the crust can be expressed at the surface in the form of heat flow units
(mW/m?) and it is generally assumed that heat is transported to the surface by

conductive means. In a conductive heat regime the temperature, T, at depth, z, is
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equal to the surface temperature, Ty, plus the product of heat flow, Q, and thermal

resistance, R, such that:
T=T,+QR, where R=z/(average thermal conductivity between the surface and z).

Consequently, the most prospective regions for geothermal exploration are those
that have geological units of sufficiently low conductivity (high thermal resistance)

in the cover sequence combined with high heat flow.

Heat flow is the product of temperature gradient and rock thermal conductivity. It is
therefore calculated, or modelled, from these two parameters, not directly
measured. The modelling of heat flow is a precision skill that requires experience
and a detailed understanding of physical conditions in the borehole and the
physical properties of the rocks; including advective processes such as ground
water flow or borehole convection that may influence bore temperature (such as
ground water flow or borehole convection), and the temperature dependence of

conductivity.

Heat flow estimates are only as accurate as the data that have been used to
generate them. It is therefore important that the temperature and conductivity data
used to model heat flow represent as closely as possible the actual thermal

conditions.

HDR’s 1D conductive heat flow modelling software accounts for heat generation
and the temperature dependence of conductivity. However, the results of 1D heat
flow modelling should be treated with caution when extrapolating data spatially
over considerable distance as thermal properties almost certainly change with

facies variation laterally.
4.3. Verification of well temperatures

Temperature interpolations and extrapolations based solely on reported well
temperatures measured during the drilling process are liable to underestimate the
true virgin rock temperature of the formations at depth. To ensure the most accurate

thermal modelling, corrections (such as Horner Plots) are applied to time series data
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recorded during logging processes.

The Horner Plot method corrects the bore hole temperature for the cooling effect of
the drilling process using the parameters of recorded bore hole temperature, the time
elapsed since the last fluid circulation, and the time between the end of drilling and
the cessation of fluid circulation. The accuracy of the correction depends on the
reliability and accuracy of the reported temperatures and times. More than one
recorded temperature from the same depth but at different times is required for a

Horner Plot.

Temperatures reported in the well completion reports of the 14 wells in the Western
Officer Basin were assessed and, where sufficient information was found, Horner
corrections were applied using the methodology of Hermanrud et al. (1990). The
corrected temperatures were used in the thermal models for these wells.
Temperatures recorded during drill stem tests (DSTs) were also accepted as
accurate representations of virgin rock temperature, and used in the thermal models.
For other temperature data it was not possible to apply corrections. Uncertainty

values were ascribed to each temperature datum, as detailed in Section 5.2.

Temperature data used for each well model, and the status of those data (corrected

or uncorrected), are itemised with the individual heat flow models in Appendix 1.
4.4. Surface temperatures

Ground surface temperature is an important constraint for heat flow models defined
by limited downhole temperature data. Average surface temperature for each well
was estimated from mean annual air temperature data reported by the Australian
Bureau of Meteorology for the Western Officer Basin (Carnegie, Warburton and Giles
weather stations). Ground surface temperature was assumed to be 3°C hotter due to
surface insulation, following the findings of Howard and Sass (1964 ). Uncertainty was

assumed to be + 1.5°C.
4.5. Temperature data issues

HDR checked the well temperature compilation provided by the DMP against primary
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data in well completion reports and identified several issues with the compilation.
Firstly, whilst BHT temperatures were recorded, other temperature datasets such
DSTs and formation tests were not always recorded. These data are invaluable for
constraining the temperature regime in a well. In addition, there were a number of
instances where the temperature at which mud fluid properties were measured had
been recorded as being a BHT. HDR found it necessary to check each well and
compile an internal temperature database to ensure all temperature data had been
accurately extracted and recorded. HDR recommends DMP undertake a quality
control exercise of its well temperature database to ensure all relevant temperature

data are captured, and to mitigate any erroneous inputs.
4.6. Rock thermal conductivity measurement

Thermal conductivity is the physical property that controls the rate at which heat
energy flows through a material in a given thermal gradient. In the S.I. system of
units, it is measured in watts per metre-Kelvin (W/mK). In the earth, thermal
conductivity controls the rate at which temperature increases with depth for a given
heat flow. The thermal conductivity distribution within a section of crust must be
known in order to calculate crustal heat flow from temperature gradient data, or to

predict temperature distribution from a given heat flow.

HDR undertook steady-state thermal conductivity measurements of 40 representative
samples from lithologies of the Western Officer Basin using HDR’s portable
electronic divided bar apparatus. Samples came from core stored at the DMP core
library in Perth. The full conductivity report is provided in Appendix 2 and a summary

of measurements is provided in Attachment E.

The majority of the samples from the deeper units of the Officer Basin were collected
from Empress 1A. It is debatable as to how representative these lithologies are of the

wider Western Officer Basin.

The 40 measurements of thermal conductivity included a number of measurements
on ‘pure’ lithological samples such as ‘shale’, ‘sandstone’, etc. Where formation
descriptions in well logs indicated mixed lithologies, a conductivity value for these

formations was estimated from the weighted harmonic mean of the conductivities of
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the ‘pure’ lithological components. This process is described in Beardsmore and Cull

(2001) and a summary of the calculation inputs is provided in Attachment F.

Some formations, such as the Browne Formation, have complex internal architecture
since the environment of deposition was particularly dynamic (Figure 9). Given the
sparse well data within the Western Officer Basin, and the limited number of samples

tested, the thermal conductivity data should be viewed as preliminary only.

|:| Sandstone Q Stromatolites
I

|:| Dolomit A Acaciella australica
eletmis Stromatolite Assemblage

|:| Sea 5 Well

Figure 9: Depositional environment for the Browne Formation (modified from Apak and Moors, 2000)

Thermal conductivity values for each Western Officer Basin formation, as derived
using the methods described above and used in the 1D heat flow models, are shown
in Table 1.
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Table 1: Thermal conductivities, once lithology mixing methods had been applied, by formation for the Western
Officer Basin, as used for 1D heat flow modelling in this report (Appendix 2 of this report).

Formation Conductivity (W/mK) Uncertainty * (W/mK)
Alluvium 1.42 0.14
Bejah Claystone 1.33 0.01
Samuel Formation 1.28 0.04
Paterson Formation 2.58 0.08
Wanna Formation 2.60 0.08
Lennis Sandstone 2.56 0.14
Table Hill Volcanics (basalt) 1.57 0.02
Table Hill Volcanics (dolerite) 2.25 0.07
unnamed sandstone 2.44 0.05
Vines Formation 2.69 0.11
Lupton Formation - -
McFadden Formation 2.47 0.36
Wahlgu Formation 2.69 0.11
Steptoe Formation 2.76 0.19
Kanpa Formation 2.89 0.40
Hussar Formation 2.99 0.28
Browne Formation 2.64 0.10
Lefroy Formation l.61 0.04
Townsend Quartzite 4.45 0.30
Mundadjini Formation 3.80 0.11
Spearhole Formation 3.54 0.08
Brassey Range Formation 4.45 0.30
Cornelia Sandstone 3.50 0.70
Basement (basalt) 2.30 0.05
Basement (silty shale) 3.50 1.50

4.7. Predicting lithologies at depth

1D heat flow models for temperature prediction at depth require detailed lithological
data, and associated rock thermal conductivities, for all formations down to the
modelled depth. HDR utilised the DMP formation top database to constrain

lithologies within the drilled portion of the heat flow models.

The DMP formation top database contained inconsistencies when cross-referenced
with the well completion reports. HDR recommends that the DMP consider a quality

control exercise with regards to the Western Officer Basin formation tops database.

The lithologies and thicknesses of deeper formations were estimated using other

available data. HDR utilised existing deep wells to estimate the thickness of
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individual formations as a ratio of the entire stratigraphic column. OZ SEEBASEv2
depth-to-basement estimates for all wells (FrOG Tech, 2007; Attachment D) were
used to constrain the overall thickness of the sedimentary section, to which the

formation-specific ratios were applied.

In order to make this methodology as robust as possible, wells that reached total
depth within the sedimentary sequence were tied to the nearest deep well that
intersected basement. This process assumed that the sedimentary units within the
sedimentary pile would continue laterally between the wells in a relatively constant
ratio. Whilst simplistic, this methodology provides one of the few mechanisms to

estimate the likely thickness of deep units for which there is a paucity of data.

A special case was the Lefroy Formation. The Lefroy Formation is regarded as a
deep water equivalent of the Townsend Quartzite (Apak & Moors, 2000). Only
Empress 1A has intersected the formation, and the total thickness was just 19 m.
HDR thus decided not to include the Lefroy Formation in modelling below TD in other

wells since we had no confidence in its lateral extent nor thickness.

In summary, whilst there remains significant uncertainty in the estimated thickness
and distribution of non-intersected formations within the Western Officer Basin, HDR
used all available data to make reasonable assessments on a regional scale to

minimise the uncertainty.
4.8. Estimating basement heat generation

Heat generation is most effectively estimated from the analytical measurement of
uranium, thorium and potassium within rock samples. As it was not possible to obtain
basement samples for analytical measurement, HDR assessed the heat generation
of rocks within and adjacent to the Western Officer Basin using data from the
Geoscience Australia geochemical data base (OZCHEM, 2007). Heat generation
values estimated from these data have been incorporated into the 1D heat flow

models for this study.

As no geochemical data were available for the Western Officer Basin, data from the

Musgrave, Pilbara and Yilgarn regions were utilised as proxies, assuming that similar
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rocks may partly comprise the basement of the Western Officer Basin. Heat

generation (uW/m®) was estimated using an assumed rock density and the isotopic

abundance method as described in Beardsmore and Cull (2001). Individual results

for basalt and metasedimentary rocks are listed in Attachments G and H respectively.

Median heat generation results for basalt and metasedimentary rock samples

adjacent to the Western Officer Basin are shown in Table 2. The data suggest that

the heat generating potential of basalts and metasedimentary rocks around the

Western Officer Basin is not high.

Table 2: Summary of heat generation estimates for two rock types around the Western Officer Basin.

Litholo Number of Assumed density Heat generation Heat generation
9y samples (g/cm?) (MW/m®) Range (MW/m®) Median
Basalt 23 3.00 0.44-1.10 0.73
Metasedimentary 9 2.48 0.23-1.65 0.66

The median values are based on a relatively small number of samples, and may

change with further geochemical sampling of basement rocks beneath the Western

Officer Basin.

e HDR recommends that the heat generation potential of basement rocks
be further investigated by the DMP
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5. Heat flow modelling

5.1. Estimated heat flow

The possibility of heat flow modelling was assessed for all 16 wells in the study. Two
wells were found to have insufficient temperature data or inadequate formation top

data to allow modelling of heat flow.

HDR incorporated temperature data, rock thermal conductivity data and heat
generating potential estimates to model heat flow in each of the remaining 14 wells
Data were incorporated into the model and heat flow was adjusted until the predicted
temperature profile best fit the reported temperature datasets. HDR constructed 1D
conductive heat flow models (Figure 10) for the 14 wells in the Western Officer Basin
(the individual details of these thermal models are shown in Appendix 1). A summary
of heat flow results, and the relative reliability ranking of these data, is shown in
Attachment I.

Temperature (°C)
] 20 40 60 80 100 120

0 \
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Ay O
1000 \
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\\;:.F
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- t\<._
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5000 i

==

Deptf) (m)

Figure 10: 1D heat flow model for the Yowlaga-3 petroleum well. The green circles represent individual tem-
perature data; the green lines represent the degree of uncertainty; the red line is the predicted temperature profile
for a heat flow of 42 + 2.4 mW/m’
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Modelled heat flow for the Western Officer Basin ranges from 33 to 95 mW/m?, with a
median value of 52 mW/m? However, the distribution of just 14 data points over the
entire Western Officer Basin makes it impossible to draw any firm conclusions about

the true distribution of heat flow across the region.
5.2. Reliability of heat flow data

Modelled heat flow is highly dependent upon the quality and quantity of temperature
data. For each temperature datum, an uncertainty range was estimated based on the
type of datum and the information known about it. For example, a well constrained
Horner corrected or DST temperature was assigned a narrow uncertainty range
centred on the corrected value. Uncorrected BHT values, however, were assigned a
very low or zero uncertainty on the ‘negative’ side and a much larger uncertainty on
the ‘positive’ side to reflect the fact that these data are very likely to understate the
true temperature conditions. Heat flow models were constructed so that predicted
temperature profiles passed as near as possible through the mid-point of the error

bars on all temperature data.

Modelled heat flow values were ascribed a relative reliability ranking based on a

qualitative assessment of the well temperature data (Table 3 and Attachment I).

Table 3: Reliability ranking scheme for the 14 wells modelled in the Western Officer Basin.

Reliability Ranking Most Reliable Temperature Data
1 One BHT datum
2 Several BHT data
3 One DST or Horner corrected temperature
4 Several DST or Horner corrected temperatures
5 Both DST and Horner corrected temperatures

Of the 14 wells modelled in this study, 10 were ascribed a reliability ranking of 1 or 2.

In order to ensure robustness of ensuing modelling, HDR usually excludes wells with
a reliability ranking of 1 or 2 from assessments of the spatial and magnitude

distribution of heat flow (Section 5.3) and temperature projections (Section 6).
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However, given that 10 of the 14 wells modelled in this study have been ascribed a

reliability ranking of 1 or 2, it was felt necessary in this instance to include all data.
5.3. Spatial and magnitude distribution of heat flow data
The spatial distribution of heat flow models is illustrated in Figure 11.

There is a paucity of data across large swathes of the Western Officer Basin, which
is not surprising considering the limited number of well intersections. This lack of data
renders impossible a thorough geothermal prospectivity assessment. In graphical
representations of the data (Figures 11 to 15) areas greater than 75 km from the
nearest data point appear blank. In addition, the heat flow estimate for petroleum well
Yowalga-2 was significantly higher than the nearby wells Yowlga-1 and Yowalga-3,

and was therefore excluded from the gridding process.

In general, those parts of the Western Officer Basin for which data exist suggest
decreasing surface heat flow towards the centre of the basin. The lowest heat flow
(<60 mW/m?) is centred in the eastern Gibson, Yowalga and northern Lennis areas.
Areas of higher heat flow occur on the margins of the basin, most notably the Savory
area and Waigan area, although the elevated heat flow in the Savory area is possibly

an artefact of the gridding process.

The most likely explanation for the lack of high heat flow is the lack of a significant
heat source in the crust. Old cratonic areas are generally depleted in radioactive

isotopes of uranium, thorium and potassium, and thus generate little internal heat.
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Figure 11: Gridded heat flow values for the Western Officer Basin. Each well was assumed to represent an area
encompassing a radius of 75 km from the well. Those parts of the basin in which there are no wells have been
left blank. Apparent elevated heat flow in the Savory area is probably an artefact of the gridding process.
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6. Temperature projection

6.1. Depth to isotherms

Heat flow modelling allows the estimation of isotherm depths by applying Equation 1
(Section 4.2). HDR was commissioned to estimate depths to the 100°C, 150°C and
200°C isotherms and a compilation of these depths beneath each well is shown in
Attachment J. The estimated formation that may be intersected at the isotherm
depth, as determined in the process described in Section 4.7, is also shown in
Attachment J.

The gridded 100°C, 150°C and 200°C isothermal surfaces are shown in Figures 12
to 14.
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6.2. Temperature at basement

HDR was commissioned to estimate the temperature at the top of the basement from
1D heat flow modelling. Following consultation with the DMP, HDR restricted this
request to areas where basement is <5,000 m deep, an assumed economic drilling

limit under current conditions.

Figure 15 shows the modelled temperature at 5,000 m depth for the Western Officer

Basin and results beneath each well are tabulated in Attachment J.
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7. Stress field in the Western Officer Basin

The successful development of an EGS is dependent upon several factors, but one
of the most critical factors is the response of the fractured rock mass to the in-situ
stress field. Stress-dependant permeability of deep-seated, fractured rocks is well
documented in studies relating to both hydrocarbon and geothermal reservoirs, as
well as nuclear waste repositories (e.g. Gentier et al., 2000; Hillis et al., 1997; Hud-
son et al., 2005). In particular, in-situ stress fields are known to exert a significant
control on fluid flow patterns in fractured rocks with a low matrix permeability. For ex-
ample, in a key study of deep (>1,700 m) boreholes, Barton et al. (1995) found that
permeability manifests itself as fluid flow focussed along fractures favourably aligned
within the in-situ stress field, and that if fractures are critically stressed this can impart
a significant anisotropy to the permeability of a fractured rock mass. Preferential flow
occurs along fractures that are oriented orthogonal to the minimum principal stress
direction (due to low normal stress), or inclined ~30° to the maximum principal stress

direction (due to dilation).

Knowledge of both the local- and regional-scale stress regime is important in order to
understand the effects of stress-dependent fracture permeability and, in EGS opera-
tions, potential reservoir growth and flooding directions under hydraulic stimulation. In
general, stress fields are anisotropic and inhomogeneous. They are defined in simpli-
fied terms by three mutually orthogonal principal axes of stress, being the maximum
(S4), intermediate (S2) and minimum (S3) stress axes. In practice, the classification of
far-field stress regimes is based upon the Andersonian scheme, which relates the
three maijor styles of faulting in the crust to the three major arrangements of the prin-
cipal axes of stress i.e. the vertical principal stress (Sy) and the maximum and mini-
mum horizontal principal stresses (Sy and Sy, respectively) (Anderson, 1951). These
three maijor styles of faulting are: (a) normal faulting where Sy > Sy > Sy,; (b) strike-
slip faulting where Sy > Sy > Sy,; and (c) reverse (or thrust) faulting where Sy > Sy, >
Sv (Figure 16).

www . hotdryrocks.com



33

31
\ ) NF: Normal faulting
SV»8H>8h

=
\ NS: Predominately normal faulting with strike-slip
component

SS: Strike-slip faulting
(includes minor normal or thrust component)

SH=8V=>8h
=
T\ TS: Predominately thrust faulting with strike-slip
component
TF: Thrust faulting
S1=8H
SH>Sh=3V

Figure 16: The World Stress Map stress regime classifications (NF, NS, SS, TS, TF) and their associated styles
of faulting (from Heidbach et al., 2008).
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The determination of the local stress field is important as theory predicts enhanced
permeability associated with critically stressed faults or fractures that are either un-
dergoing dilation (~parallel to S) or shear reactivation (<45° to S1) under the influ-

ence of the contemporary stress field.

With respect to EGS developments, knowledge of the stress field and pre-existing
fractured rock mass can be used to make preliminary predictions of fracture and res-
ervoir growth directions during hydraulic stimulation. The three major fracture growth

directions are:

(a) Steep to vertical dipping fractures that strike orthogonal to S;, in a normal faulting

stress regime (Sy>Sp>Sy);

(b) Steep to vertical dipping fractures that strike <45° (commonly 30°) to the direction

Sy in a strike-slip faulting stress regime (Sy>Sv>Sy), and;

(c) Shallow to horizontal dipping fractures (aligned in the direction of Sy) that strike

~parallel to Sy in a thrust faulting stress regime (Sy>Sy>Sv).

7.1. Western Officer Basin stress measurement data

The World Stress Map reports only one in situ stress indicator within the Western
Officer Basin, from the petroleum well Kanpa-1A. Kanpa-1A contained several
borehole breakouts that collectively indicate that the maximum horizontal stress
direction (Sy) in this region is approximately east-west (~100°). The relative

magnitudes are currently unknown (Heidbach et al., 2008).
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8. Prospectivity

Nearly all the modelled areas within the Western Officer Basin have the 150°C
isotherm modelled at greater than 5,000 m depth, as shown in Figure 15. In addition,
most modelled areas have the 150°C isotherm apparently coincident with
Mesoproterozoic basement which is highly unlikely to preserve any natural

permeability.

The modelled temperature at 5,000 m depth are not particularly encouraging for
geothermal potential and it should once again be noted the readings in the western

Savory area shown in Figure 15 are likely to be an artefact of the gridding process.

The paucity of data and the unresolved stress regime means that no conclusions can
be drawn in regards to the potential effects of the local in situ stress field on EGS
developments. Resolving this issue will require that the local stress field be

determined at a number of individual well locations.
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9. Conclusions and Recommendations

Data from the 14 wells modelled in this study suggest that the Western Officer Basin
has a median heat flow value of 52 mW/m?. This is lower than the mean of

58.3 mW/m? as recorded for Proterozoic basins by Pollack et al., (1993) and
considerably lower than other Western Australian basins (HDRPL, 2008; Driscoll et
al., 2009).

The lack of relevant geophysical and geological datasets means that a definitive
geothermal assessment of the Western Officer Basin is currently unachievable. Only
33 petroleum and stratigraphic wells have been drilled in the Western Officer Basin—

an area of approximately 300,000 km?.

Those parts of the Western Officer Basin for which data exist suggest decreasing
surface heat flow towards the centre of the basin with the lowest heat flow

(<60 mW/m?) being centred in the eastern Gibson, Yowalga and northern Lennis
areas. Areas of higher heat flow are apparent on the margins of the basin, most
notably the Savory area and Waigan area. However, apparent elevated heat flow in
the Savory area is probably an artefact of the gridding process. The most likely

explanation for the low heat flow is a lack of a significant heat source in the crust.

Nearly all heat flow models in the Western Officer Basin predict the 150°C isotherm
at greater than 5,000 m depth, implying limited potential EGS prospectivity given
current economic drilling limitations. In addition, most models predict the 150°C
isotherm coincident with Mesoproterozoic basement, which is highly unlikely to
preserve any natural permeability, thus negating the potential for Hot Sedimentary

Aquifer (HSA) geothermal systems.

In regards to the contemporary, in-situ stress field of the Western Officer Basin, a
lack of regional-scale stress indicator data and the unresolved stress regime means
that no conclusions can be drawn in regards to the potential effects of the local in situ

stress field on EGS developments.

HDR makes the following specific recommendations with regards to future studies:
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e DMP should obtain new data via Precision Temperature Logging (PTL) of
existing petroleum wells, minerals bores and water bores. This will provide

crucial data to delineate heat flow in other parts of the Western Officer Basin.

e DMP should contact all minerals and petroleum companies that have leases in
the Western Officer Basin. DMP should request that temperature, lithology
and stress data be collected as part of any work program when new wells and

bores are drilled.

e DMP should further investigate the heat generation potential of basement

rocks.

e DMP should consider a field program to obtain stress field estimates via hy-
draulic fracturing or borehole imaging of existing wells. With robust stress field
data, 2D or 3D numerical hydro-mechanical modelling could be undertaken to
constrain expected geothermal reservoir growth and flooding directions. Such
a modelling exercise would also require: (1) estimates of pore fluid pressures
from either well drill stem (DST) or leak off (LOT) tests; (2) laboratory esti-
mates of the hydraulic and bulk moduli properties of key rock types as col-
lected from selected core samples; and (3) detailed structural interpretations

at both the regional and prospect scale.
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Appendix 1

Heat flow models and temperature data
used for each well in the Officer Basin Report
DMP0260909

HDR

July 2010

An appendix to the report - Geothermal Energy Potential in Selected Areas of
Western Australia (Officer Basin); prepared for the Department of Mines and
Petroleum, Western Australia.






Mundadjini Formation
Mundadjini Formation [Kari Member]
Mundadjini Formation
Spearhole Formation
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Table Hill Volcanics [dolerite]
Table Hill Volcanics [dolerite]
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Basement [metasediment]
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(1] 2.6912 BHT [time since circ 24 hours]
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Samuel Formation
Paterson Formation
Browne Formation
Browne Formation
Browne Formation
Browne Formation
Browne Formation
Browne Formation
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Townsend Quartzite
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Temperature (°C)
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Samuel Formation 1.28 = 0.04
Paterson Formation 258 £ 0.08
Browne Formation 2.64 =010
Browne Formation | 2.64 =0.10
Browne Formation 264 £0.10
Browne Formation 2.64 =010
Browne Formation 2.64 =0.10
Browne Formation 264 £0.10
Browne Formation 2.64 =010
Townsend Quartzite 4,45 £ 0.30
Basement [metasediment] 3.50 +1.50

'g==========

281.94 32.22 0.5639 BHT [time since circ unknown]
280.11 32.22 ] "0.5602 BHT [time since circ unknown]

Temperature (°C)
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Samuel Formation
Paterson Formation
Browne Formation
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Water analysis
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Cainozoic [undif.] 1.42 £ 0.14
Paterson Formation 2.58 £ 0.08
Lennis Sandstone 2.56 = 0.14
Table Hill Volcanics [basalt] 1.57 £ 0.02
unamed Sandstone 2.44 + 0.05
Wahlgu Formation 2.69 £ 0.11
Steptoe Formation 2.76 +0.19
Kanpa Formation 2.89 = 0.40
Hussar Formation L 2.99 £ 0.28
Browne Formation 2.64 =0.10
Lefroy Formation 1.61 = 0.04
Basement [metasediment] 2.05 £ 0.05
Basement [basalf] 2.30 £ 0.05
Basement [basalt] 2.30 £ 0.05
Basement [basali] 2.30 £ 0.05
Basement [basalf] 2.30 £ 0.05
Basement [basalt] 2.30 £ 0.05
Basement [basalf] 2.30 £ 0.05
Basement [basalt] 2.30 £ 0.05
Basement [basalf] 2.30 £ 0.05
Basement [basalt] 2.30 = 0.05
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Cainozoic [undif.] 1.42 + (.14
McFadden Formation L 2,47 = 0.36
Cornelia Sandstone : 3.50 = 0.70
Cornelia Sandstone 3.50 = 0.70
Basement [metasediment] 3.50 =1.50
Basement [metasediment] 3.50 =1.50
Basement [metasediment] 3.50 =1.50
Basement [metasediment] 3.50 =1.50
Basement [metasediment] 3.50 =1.50
Basement [metasediment] 3.50 £1.50
Basement [metasediment] 3.50 £1.50
Basement [metasediment] 3.50 £1.50
Basement [metasediment] 3.50 = 1.50

BHT [time since circ >72:00 hours]
BHT [time since circ unknown]
BHT [time since circ >72:00 hours]
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Cainozoic [undif.] 1.42 + (.14
Vines Formation 370 £1.20
Vines Formation 370 £1.20
Vines Formation 370 £1.20
Vines Formation 3070 £1.20
Vines Formation 370 £1.20
Vines Formation 370 £1.20
Vines Formation 370 £1.20
Vines Formation 370 =120
Vines Formation 3070 £1.20
Basement [metasediment] 3.50 = 1.50
Basement [metasediment] 3.50 =1.50

4.022 BHT [time since circ unknown]
" 4.036 BHT [time since circ 20:10 hours]
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Samuel Formation 1.28 = 0.04
Paterson Formation 2.58 £ 0.08
McFadden Formation equivalent 247 £ 0.36
Wahlgu Formation 2.69 = 0.1
Kanpa Formation 2.89 = 0.40
Hussar Formation 2.99 = 0.28
Browne Formation 2.64 £ 0.10
Browne Formation 2.64 = 0.10
Browne Formation 2.64 = 0.10
Browne Formation 2.64 = 0.10
Townsend Quartzite 4.45 = 0.30
Basement [metasediment] 3.50 =£1.50
Basement [metasediment] 3.50 £1.50
Basement [metasediment] 3.50 =1.50
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Samuel Formation 1.28 £ 0.04
Paterson Formation 2.58 £0.08
Lennis Sandstone 2.56 £0.14
Table Hill Volcanics [basalt] . 1.57 £ 0.02
McFadden Formation equivalent 247 = 0.36
Steptoe Formation 2.76 £0.19
Kanpa Formation 2.89 = 0.40
Hussar Formation 2.99 £0.28
Browne Formation 2.64 £0.10
Townsend Quartzite 4.45 £ 0.30
Townsend Quartzite 4.45 £ 0.30
Basement [metasediment] 3.50 £1.50
Basement [metasediment] 3.50 £ 1.50
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BHT [time since circ 9 hours]
BHT [time since circ 13 hours]
BHT [time since circ 5 hours]
BHT [time since circ 5.25 hours]
Horner [4 values]

Horner [4 values]

BHT [time since circ unknown]
BHT [time since circ 3.25 hours]
BHT [time since circ 7.25 hours]
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BHT [time since circ 11.5 hours]
BHT [time since circ 15.75 hours]
Horner [3 values]
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Samuel Formation 1.28 = 0.04
Paterson Formation 2.58 = 0,07
Lennis Sandstone 2.56 = 0.14
Table Hill Volcanics [basalt] 1.57 + 0.02
Table Hill Volcanics [basalt] 1.57 £ 0.02
Kanpa Formation 2.89 + 0.28
Hussar Formation 2.99 =013
Browne Formation 2.64 =010
Browne Formation 2.64 =010
Browne Formation 2.64 = 010
Browne Formation 2.64 =010
Townsend Quartzite 4.45 = 0.30
Basement [metasediment] 3.50 £1.50
Basement [metasediment] 3.50 = 1.50
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Mundadjini Formation
Mundadjini Formation [Kari Member]
Mundadjini Formation
Spearhole Formation
Spearhole Formation
Basement [metasediment]
Basement [metasediment]
Basement [metasediment]
Basement [metasediment]
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Mesozoic [undif.] 1.42 +0.14
Samuel Formation 1.28 = 0.04
Paterson Formation 2.58 = 0.08
Lennis Sandstone 2.56 = 0.14
Lennis Sandstone 2.56 =0.14
Table Hill Volcanics [basali] 1.57 = 0.02
Kanpa Formation 2.89 = 0.40
Hussar Formation 2.99 = 0.28
Browne Formation 2.64 =010
Browne Formation 2.64 =010
Browne Formation 2.64 =010
Browne Formation 2.64 = 0.10
Browne Formation 2.64 =010
Townsend Quartzite 4.45 = 0.30
Basement [metasediment] 3.50 =1.50
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Samuel Formation 1.286 = 0.04
Paterson Formation 2.58 = 0.08
Lennis Sandstone | 2.56 = 0.14
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Kanpa Formation ! 2.89 = 0.40
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Townsend Quartzite 4.45 = 0.30
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Executive Summary

The Western Australian Department of Mines and Petroleum (DMP) commissioned
Hot Dry Rocks Pty Ltd (HDR) to measure the thermal conductivity of 119 rock
specimens collected from the DMP Perth Core Library and Geoscience Australia
Canberra Core Library in April 2010. These specimens came from the Bonaparte,
Browse, Carnarvon and Officer basins. Measurements were made on the specimens
using a steady state divided bar apparatus calibrated for the range 1.4-9.8 W/mK.
Up to three samples were prepared from each specimen to investigate variation in
thermal conductivity over short distance scales and to determine mean conductivity
and uncertainty. All values were measured at a standard temperature of 30°C. The

uncertainties are dependent upon sample quality and preparation method..

HDR considers the following points to be important:

¢ While the specimens were chosen to represent the cored geological sections
from which they came, there is no guarantee that the sections themselves are

typical of the overall geological formations.

e |t is to be expected that the thermal conductivity of a given formation will vary

from place to place if the porosity of the formation varies.

e Thermal conductivity of rocks is sensitive to temperature. This should be kept in

mind when developing models of in situ thermal conductivity.

Disclaimer

The information and opinions in this report have been generated to the best ability of the author, and Hot Dry
Rocks Pty Ltd hope they may be of assistance to you. However, neither the author nor any other employee of
Hot Dry Rocks Pty Ltd guarantees that the report is without flaw or is wholly appropriate for your particular
purposes, and therefore we disclaim all liability for any error, loss or other consequence which may arise from
you relying on any information in this publication.

Copyright
This report is protected under the Copyright Act 1968 (Section 193).
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1. Introduction

Thermal conductivity is the physical property that controls the rate at which heat
energy flows through a material in a given thermal gradient. In the S.I. system of
units, it is measured in watts per metre-kelvin (W/mK). In the Earth, thermal
conductivity controls the rate at which temperature increases with depth for a given
heat flow. The thermal conductivity distribution within a section of crust must be
known in order to calculate crustal heat flow from temperature gradient data, or to

predict temperature distribution from a given heat flow.

The Western Australian Department of Mines and Petroleum (DMP) commissioned
Hot Dry Rocks Pty Ltd (HDR) to undertake heat flow modelling in the Bonaparte,
Browse, Carnarvon, and Officer basins. HDR collected 119 specimens1 from the
DMP Perth Core Library and Geoscience Australia Canberra Core Library in April
2010 (Table 1). Thermal conductivity measurements were made on these specimens

using a steady state divided bar apparatus calibrated for the range 1.4-9.8 W/mK.

Thermal conductivity is sensitive to temperature (e.g. Vosteen and Schellschmidt,
2003%), in general decreasing as temperature increases. The measurements

contained in this report were made within + 2°C of 30°C.

" In this report the word “specimen” refers to a raw piece of rock delivered to HDR, while “sample” refers to
part of a specimen prepared for conductivity measurement. In general, three samples are prepared from each
specimen.

2 Vosteen, H.-D. and Schellschmidt, R. (2003). Influence of temperature on thermal conductivity, thermal ca-
pacity and thermal diffusivity for different types of rock. Physics and Chemistry of the Earth, 28, 499-509.
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Table 1. Specimens presented for thermal conductivity measurement.

Depth Depth HDR
Well Basin Formation Lithology From Depth From Deptlh sample
To (m) . To ()
(m) () ID
Toolonga .
Coburn 1 Carnarvon Calcilutite light grey marl 73.70 73.92 DIR089
Birdron light brown carbo-
Coburn 1 Carnarvon 9 naceous fine- 172.70 172.85 DIR090
Sandstone .
grained sst
Kooke grey light brown
Coburn 1 Carnarvon P sst with finely 212.70 212.85 DIR091
Sandstone .
laminated
Kooke red bed sst finely
Coburn 1 Carnarvon Sand‘;tone laminated, similar 404.40 404.55 DIR092
to DIR091 but red
red/green/grey
Coburn 1 | Carnarvon Kopke | mottled sit/cst - 47540 | 47550 DIR093
Sandstone differing oxidising
regimes
Coburn 1 | Carnarvon Faure bioturbated 564.60 | 564.80 DIR094
Formation grey/red/brown cst
Fg'(r)r:)aut:’cr:n blue/grey (light
Coburn 1 Carnarvon . ’ and dark lamina- 616.70 616.85 DIR095
Dirk Hartog . o
G tions) dolomitic cst
roup
Fc?r(r)r:):t:’cr:n blue/grey (light
Coburn 1 Carnarvon . ’ and dark lamina- 685.50 685.65 DIR096
Dirk Hartog . o
G tions) dolomitic cst
roup
Fc\:?r;lgt?:n blue/grey (light
Coburn 1 Carnarvon . ’ and dark banding) 794.40 794.65 DIR097
Dirk Hartog s
G dolomitic cst/slt
roup
Fof\rjr? a?t?on blue/grey (light
Coburn 1 Carnarvon . ’ and dark lamina- 893.75 893.90 DIR098
Dirk Hartog . o
G tions) dolomitic cst
roup
Marron
Coburn 1 | Carnarvon MXJ.’ZE:“ dark blue/grey cst | 920.30 | 920.45 DIR099
Formation
M'\g?:t?:r pale tan cst with
Coburn 1 Carnarvon Aiana ’ numerous grey 951.70 951.90 DIR100
E Jana salt patches
ormation
Tumblagooda dark brown/red slt
Coburn 1 Carnarvon 9 beds [10% of 1011.40 | 1011.65 DIR101
Sandstone .
cored interval]
pale pink to pink-
red medium-
Tumblagooda grained to granule
Coburn 1 Carnarvon 9 sst [90% of cored 1030.00 | 1030.20 DIR102
Sandstone ; ;
interval]; predom
quartz and orthoc-
lase grains
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Windalia
Coburn 1 Carnarvon Sandstone sst [friable] 150.80 151.00 DIR103
Member
Coburn 1 | Carnarvon M“Sdheargng mst 166.30 | 166.50 DIR104
GSWA Keogh medium-grained to
Ballythanna | Carnarvon 9 granule sst com- 35.90 36.10 DIR105
Formation
1 mon cross beds
light tan fine-
GSWA Ballythanna | grained to me-
Ballythanna | Carnarvon Sandstone dium-grained sst 131.90 132.05 DIR106
1 Member [50% of cored
interval]
fine-grained sst
with common car-
GSWA Ballythanna mgfg:;susvyhe;:eg
Ballythanna | Carnarvon Sandstone ’ P 292.30 292.43 DIR107
and slumped lay-
1 Member . A
ers; pyritic; biotur-
bated [50% of
cored interval]
GSWA Callytharra dark grey ve
Ballythanna | Carnarvon | ytha - grey very 358.75 | 358.90 DIR108
1 ormation fossiliferous shale
GSWA fine-grained sst
Ballythanna | Carnarvon | Lyons Group 9 397.55 397.70 DIR109
1 cream coloured
light grey fine-
GSWA grained sst with
Ballythanna | Carnarvon | Lyons Group | common flaser 453.40 453.55 DIR110
1 beds of dark grey
slt
GSWA dark grey inter-
Ballythanna | Carnarvon | Lyons Group | bedded slt/fine- 461.70 461.85 DIR111
1 grained sst
Billidee dark grey slt, fine-
Giralia 1 Carnarvon . grained sst hetero- | 682.10 682.22 DIR112
Formation o
lithic
Giralia 1 | Carnarvon | .C0Mda@ | 4o grey cst? 919.00 | 919.10 DIR113
Formation
Kennedy Carnarvon Coolkilya tan.grey medium- 1530' 15(30' DIR114
Range 1 Sandstone grained sst 9
reddish brown ,
Kennedy Carnarvon Bake.r medium-grained 2005' 20(,),5 DIR115
Range 1 Formation sst 9
. brown medium- ' '
Kennedy Carnarvon Nalbia grained sst, occa- 201..5 201,,6 DIR116
Range 1 Sandstone . . ; 6 3
sional bioturbation
dark brown slt/sst, ,
Kennedy Carnarvon Wandagee heavily biotur- 2210 221..0 DIR117
Range 1 Formation 6
bated
dark grey/light
grey sst, finely
Kennedy Carnarvon Cundle_go Iamlnated., pin 2817' 281"7 DIR118
Range 1 Formation stripe laminations 9
[50% of cored
interval]
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dark brown slt/sst,
Kennedy Cundlego heavily biotur- 2819 2820
Range 1 | C@MaNoN | o mation | bated [50% of 6" 3 | DIRT19
cored interval]
Kennedy Bulgadoo 4163 4164’
Range 1 Carnarvon Shale brown slt 6" 3 DIR120
dark grey/light
grey sst, finely
Kennedy Carnarvon Mallens Ian.1|nated., pin 4711" 471"1 DIR121
Range 1 Sandstone stripe laminations 6
[25% of cored
interval]
dark brown slt/sst,
Kennedy Mallens heavily biotur- , 5104
Range 1 Carnarvon Sandstone bated [75% of 5104 9" DIR122
cored interval]
Kennedy Coyrie brown sst, minor 5484’ 5484’
Range 1 Carnarvon Formation bioturbation 3" 10" DIR123
Kennedy Carnarvon Coyng pale.plnk/tarlm sst, 55(27 5538' | DIR124
Range 1 Formation no bioturbation 3
dark grey cst/slt
Dingo with thin stringers
Linda 2 Carnarvon 9 of light grey slt/sst | 2814.80 | 2815.05 DIR125
Claystone )
- lenticular bed-
ding
light tan grey
Kennedy Carnarvon Moogooloo cc.)arse.—gralned sst 6606' 66(36 DIR126
Range 1 Sandstone | with minor carbo- 9
naceous flecks
GSWA
Barrabiddy | Carnarvon | Nannyarra | green grey mottled | 704 7 | 7gq.95 DIR127
1A Sandstone sst/slt
light grey fine-
GSWA Gneudna grained sst with
Barrabiddy | Carnarvon Formation rare slt flasers, 773.90 774.10 DIR128
1A some slumping in
adjacent core
GSWA green-grey to light
?
Barrabiddy | Camarvon | Cneéudna | grey calcareous? 759.55 | 759.70 DIR129
1A Formation Sst; highly fossili-
ferous
GSWA Gneudna light blue/grey Ist
Barrabiddy | Carnarvon Formation with common 669.35 669.55 DIR130
1A stylolites
GSWA
Barrabiddy | Camarvon | Cneéudna | darkgreen/grey | g1690 | 1710 DIR131
1A Formation slt/cst
GSWA Gneudna dark green/grey
Barrabiddy | Carnarvon . slt/cst; highly fos- 617.65 617.90 DIR132
Formation
1A siliferous
GSWA Gneudna tan coloured Ist;
Barrabiddy | Carnarvon | ormation, | vugsiboringsrare | gq4 75 | 55195 DIR133
1A Point Maud | [10% of cored ’ ’
Member interval]
GSWA Gneudna tan coloured Ist;
. Formation; ubiquitous
Barrjazlddy Carnarvon Point Maud | vugs/borings [90% 467.00 467.20 DIR134
Member of cored interval]
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light grey fine- to
GSWA Munabia rsns?C\]/\I/lthrr?_c%rrilr:]ec)dn
Barrabiddy | Carnarvon F . 213.20 213.45 DIR135
1A ormation flaser slt beds
[~29 m = 34% of
cored interval]
dark green/grey
GSWA .
Barrabiddy | Carnarvon FM””""':’.'a mst, mottled [~56 | ;45 o5 | 246.40 DIR136
1A ormation m = 66% of cored
interval]
Quail1 | Camarvon | Yindagindy ) dark blue/grey 8649 | 8949 | pr1a7
Formation calcareous mst 9
. reddish brown ,
Quail 1 Carnarvon Qual! medium-grained 7319' 731..9 DIR138
Formation sst 9
Onslow1 | Carnarvon | MuNgaroo | ... oittled sit 3781 | 3782 | DIR139
Formation 3
Mungaroo 4279' 4280’
Onslow 1 Carnarvon Formation pale grey/buff sst 9" 6" DIR140
. , 5706'
Onslow 1 Carnarvon | Locker Shale | light brown sst 5706 9" DIR141
Onslow 1 Carnarvon | Locker Shale | dark grey shale 6631 6%%1 DIR142
Learmonth Carnarvon Learmo.nth cream medium- 5375' 53{5' DIR143
2 Formation grained sst 9
dark grey sly,
Pluto3 | Carnarvon | Brigadier | highly bioturbated, | 5,55 70 | 3057 00 DIR144
Formation thin whisps of fine-
grained sst
heterolithic fine-
Brigadier grained yellow/buff
Pluto 3 Carnarvon gadi sst and dark grey 3067.20 | 3067.50 DIR145
Formation -
slt; occasional
bioturbation
heterolithic fine-
grained yellow/buff
sst and dark grey
Calliance 1 | Browse Montara | slt, highly biotur- | 5774 54 | 3776 39 DIR146
Formation bated; occasional
reddish brown
nodules/diagenetic
overprint?
Brecknock Browse PIovgr yellow fine-grained 3786.80 | 3787.00 DIR147
2 Formation sst
Calliance 1 | Browse Plover | greysit, mottled | 3797 59 | 3797.40 DIR148
Formation [bioturbated]
dark grey slt; high-
Brecknock Nome ly fractured
> Browse Formation [healed? Doubtful 3825.70 | 3825.90 DIR149
drilling induced?]
reddish finely la-
) Kanpa minated interbed- , 2796
Yowalga 2 Officer Formation ded slt/sst; thick 2796 9" DIR150
quartz veins
cream to light grey ,
Yowalga2 | Officer Kanpa | g o)y laminated 3242 | 3242" | pRr151
Formation . 9
interbedded slt/sst
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Bonaparte Point Spring | salmon pink me- 576 576'
1A Bonaparte Sandstone dium-grained sst 4/ 8/ DIR152
9 578'4" | 578' 8"
Bonaparte Tanmurra ' an ,
1A Bonaparte Formation grey slt 689'8 690 DIR153
heterolithic fine-
grained light grey 3948' 3948
Bonaparte Milligans sst and dark grey 4"/ 8"/
2 Bonaparte Formation slt; slumping fea- 3940’ 3940' DIR154
tures; whispy slt in 4" 8"
the sst
heterolithic fine- 9267" 9267
Bonaparte Burt Range | grained cream sst 4"/ 8"/
1A Bonaparte Formation and greenish grey 9263' 9263 DIR155
slt 4" 8"
Bonaparte Cockatoo ” . 10476' | 10476’
1A Bonaparte Group ?grey quartzite 4 8" DIR156
L?Erglsqa{'a Bonaparte | Frigate Shale | grey shale 3249.70 | 3249.90 DIR157
GSWA .
Barrabiddy | Carnarvon | oeare | darkgrey friable 66.00 | 66.30 DIR158
1A Siltstone mst
GSWA Windalia rey mst, not
Barrabiddy | Carnarvon ncal: grey mst, 127.75 | 127.95 DIR159
1A Radiolarite dense
GSWA Windalia green slt to fine-
Barrabiddy | Carnarvon Sandstone grained sst; glau- 157.30 157.45 DIR160
1A Member conitic
Turtle 1 | Bonaparte | Bonaparte | greyfine-tome- 1,0 5 | 5488 50 DIR161
Formation dium-grained sst
Kevlin sst, oil impreg-
Turtle 1 | Bonaparte | =Y %9 nated; no nonoil | 929.00 | 929.30 DIR162
ormation S
sands within core
Kevlin heterolithic dark
Turtle 1 Bonaparte F yling grey slt/light grey 932.45 932.70 DIR163
ormation g
sst; whispy slt
Treache interbedded light
Turtle 1 Bonaparte Shalery grey sst and dark 1441.65 | 1441.85 DIR164
grey slt
Turtle 1 | Bonaparte FK“”y'p.p' light grey sst 1599.65 | 1599.95 DIR165
ormation
Kuriviooi light grey sst and
Turtle 1 Bonaparte F yipp dark grey slt; mot- | 1601.50 | 1601.75 DIR166
ormation ?
tled/bioturbated
Turtle 1 | Bonaparte FK””y'p.p' grey diamictite? 1612.00 | 1612.30 DIR167
ormation
GSWA Lennis partially friable
Empress Officer s yellow medium- 165.90 166.10 DIR168
andstone )
1A grained sst
GSWA
Empress | Officer Paterson | buff fo tan me- 127.05 | 127.20 DIR169
1A Formation dium-grained sst
GSWA Paterson gea;gf;s:g[ip ored
Empress Officer E : ¢ 116.15 116.40 DIR170
1A ormation coar§e—gralned sst
matrix
GSWA Unnamed reddish brown
Empress Officer S medium-grained 294.25 294.60 DIR171
1A andstone sst
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GSWA Paterson

Empress Officer E . light grey slt 106.70 107.00 DIR172
1A ormation

GSWA . .

Empress | Officer \T/ab'e Hill | reddishgreyba- | 584 70 | 284.00 DIR173
1A olcanics salt

GSWA Wahigu

Empress Officer E 9 red cst 367.80 368.00 DIR174
1A ormation

GSWA .

Empress | Officer Fwah'9“ red medium- 351.80 | 352.00 DIR175
1A ormation grained sst

GSWA

Empress | Officer Fwah'9“ dark brown cst 43150 | 431.70 DIR176
1A ormation chips

GSWA Steptoe

Empress Officer E pto grey dolomite 504.65 504.85 DIR177
1A ormation

GSWA

Empress | Officer Steptoe | dark brown cst 603.80 | 604.00 DIR178
1A Formation chips

GSWA Steptoe

Empress Officer F pto red sst 568.30 | 568.50 DIR179
1A ormation

GSWA Kanoa

Empress Officer . P grey dolomite 651.40 | 651.70 DIR180
1A ormation

GSWA Kanoa

Empress Officer F P light grey sst 743.50 743.80 DIR181
1A ormation

GSWA Kanoa

Empress Officer P mst 805.90 | 806.10 DIR182
1A Formation

GSWA )

Empress | Officer Hussar | interbedded 931.00 | 931.30 DIR183
1A Formation mst/slt/sst

GSWA Hussar

Empress Officer . sst 1122.10 | 1122.40 DIR184
1A Formation

GSWA Hussar

Empress Officer ussa mst 1091.10 | 1091.30 DIR185
1A Formation

GSWA Hussar

Empress Officer . dolomite 1075.90 | 1076.20 DIR186
1A Formation

GSWA Hussar

Empress Officer E - mst/slt 1223.30 | 1223.55 DIR187
1A ormation

GSWA Browne

Empress Officer . halite 1309.65 | 1309.80 DIR188
1A Formation

GSWA Browne

Empress Officer . dolomite, slt 1409.40 | 1409.55 DIR189
1A Formation
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GSWA Browne
Empress Officer . dolomite, slt 1403.75 | 1403.95 DIR190
1A Formation
GSWA )
Empress | Officer | Lefroy | heavily fractured | 4544 74 | 1531.90 DIR191
1A ormation maroon to grey slt
GSWA
Empress Officer Basement basalt 1603.60 | 1603.80 DIR192
1A
GSWA dark grey/black
Empress Officer Basement finely laminated 1558.90 | 1559.20 DIR193
1A silty shale
Boondawari | oo | Mundadjini oy oo 302.20 | 302.40 DIR194
1 Formation
Boondawari | - oo | Spearhole |y oo 61330 | 613.50 DIR195
1 Formation
Boondawari | i Spearhole 1y qit/cst 612.35 | 612.60 DIR196
1 Formation
Boondawari | i Table Hill 410 rite 1365.40 | 1365.60 DIR197
1 Volcanics
. Brassey .
Boondawari | ooy Range | nterbedded red 834.60 | 834.80 DIR198
1 . slt/sst
Formation
Boondawari | - oo, | Spearhole )y o 349.60 | 349.80 DIR199
1 Formation
salmon pink to
cream cst with
. frequent pink-
BMR Officer Bejah purple mottling; 30'11" | 31'7" | DIR200
Browne 1 Claystone :
very light and al-
most porcelane-
ous
dark grey to yel-
low-grey lami-
nated cst, slt and
BMR Officer Samugl fine-grained sst; 305" 325'6" | DIR201
Browne 1 Formation sulphorous, occa-
sional bioturba-
tion, micaceous,
glauconite?
reddish-brown to
ochre slt, cst with
BMR Officer Samuel finely laminated 192'1" | 192' 7" | DIR202
Browne 1 Formation . .
interbeds of whis-
py fine-grained sst
tan fine-grained
sst; occasional , ,
BMR Neale | o Wanna | o idish brown 369" | 369 | biRoo3
1A-1B Formation NS 11 11
mottling; feint
cross-bedding
BMR Neale Officer McFadqen grey to t.an/grey 307" 3277 | DIR204
1A-1B Formation fine-grained sst
BMRNeale | oq, | McFadden 0 oq it 308' | 308'9" | DIR205
1A-1B Formation
grey cst with ab-
BMR ' Kanpa undant gypsum . 200'
Throssell 1 Officer Formation crystal; chicken- 200 10" DIR206
wire appearance?
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v Madeline dark grey slt, cst;
Glenburgh | Carnarvon . rare fossiliferous 192' 192'6" | DIR207
Formation "
> [graptolite?]
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2. Methodology

Three sample preparation methods were undertaken to measure the thermal
conductivity of specimens DIR089—DIR207, depending on specimen quality and
quantity. In this report these three methods are referred to as ‘Whole rock’, ‘Hollow
cell, whole rock’, or ‘Hollow cell, matrix’. Up to three samples were prepared from
each specimen to investigate variation in thermal conductivity over short distance

scales and to determine mean conductivity and uncertainty.

Where possible, three prisms were cut from each core specimen, each approximately
Y5 to 72 the length of the sample in thickness, and each sample was ground flat and

polished. These are indicated on Table 2 by the description ‘Whole rock’.

In cases where the core specimens were of a relatively unconsolidated lithology
(such as clays, muds, and marls) showing significant susceptibility to deterioration
during saturation, samples were prepared using hollow cells. These are indicated on

Table 2 by the description ‘Hollow cell, whole rock’.

In cases where the core specimens were either crushed or highly fragmented,
making it impossible to measure the sample in its whole-rock state, thermal
conductivity was measured as a matrix within a hollow cell with water. In such cases,
the net conductivity of the rock matrix was calculated from the gross conductivity of
the rock-water aggregate. These are indicated on table 2 by the description ‘Hollow

cell, matrix’. Colloquially, these samples are referred to as ‘chips’ or ‘cuttings’.

All samples were evacuated under >95% . .
Figure 1. The average conductivity of samples

vacuum for a minimum of three hours. in series (e.g. A and B) is found using the har-
. monic mean. The average conductivity of sam-
Samples were then submerged in water ples in parallel (e.g. A and C) is found using the

arithmetic mean.

prior to returning to atmospheric
pressure. Saturation continued at

atmospheric pressure for a minimum of

twelve hours, and all samples were left

submerged in water until just prior to

conductivity measurement.
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Samples were then measured for thermal conductivity measurement in a divided bar
apparatus3. The thermal conductivity was measured along the long axis of the core
provided for all samples prepared either as ‘Whole rock’ or ‘Hollow cell, whole rock’.
Values were measured at a standard temperature of 30°C (x 2°C). Harmonic mean
conductivity (Figure 1) and one standard deviation uncertainty were calculated for

each specimen. Results are presented in the next section.

3 Divided bar apparatus: An instrument that places an unknown sample in series with a standard of known ther-
mal conductivity, then imposes a constant thermal gradient across the combination in order to derive the conduc-
tivity of the unknown sample.
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3. Results

Table 2 displays the thermal conductivity for each individual sample, and the
harmonic mean conductivity and standard deviation for each specimen. All values
are for a standard temperature of 30°C. The uncertainty for individual samples is
approximately £ 2% for non-friable whole rock samples (based on the instrument
precision of the divided bar apparatus). Uncertainties for thermal conductivity
measurements are shown in Table 2.

Table 2. Thermal conductivity of samples at 30°C, with well name, depth, uncertainty, sample type, and har-
monic mean and uncertainty® for each specimen.

eepl Depth Rt Depth Uncer- Sample HDR sam- Conductlv!ty il
Well From To (m) From To () tainty (%) tvoe le ID harmonic mean,
(m) ) y (7 yp P standard deviation
Al 151
Coburn 1 7370 | 73.92 5 Hollow cell, | 1 oogg [ B | 146 | 148 + 0.03
whole rock
c| 148
A | 2.49
Coburn1 | 17270 | 172.85 5 Hollow cell, | o090 [ B | 251 | 247 + 0.06
whole rock
c | 240
A | 3.26
Coburn1 | 21270 | 212.85 5 Hollow cell, | 1 p091 [ B [ 322 [ 312 + 0.19
whole rock
c | 2.91
A | 357
Coburn1 | 404.40 | 404.55 3.5 Whole rock | DIR092 | B | 3.64 | 3.64 + 0.07
c | 3.70
Al 167
Coburn1 | 475.40 | 475.50 5 Hollow cell, | 1 oog3 [ B | 161 | 161 + 0.06
whole rock
c| 155
Al 212
Coburn1 | 564.60 | 564.80 3.5 Whole rock | DIR094 | B | 2.08 | 214 + 0.08
c|222
A | 3.37
Coburn1 | 616.70 | 616.85 3.5 Whole rock | DIR095 | B | 3.69 | 3.50 + 0.17
c | 345
A | 2.48
Coburn 1 685.50 685.65 3.5 Wholerock | DIR096 | B | 255 | 253 + 0.04
c | 255
A | 3.08
Coburn1 | 794.40 | 794.65 3.5 Whole rock | DIR097 | B | 3.17 | 3.16 + 0.08
C | 324

4 Uncertainty of the thermal conductivity for each specimen is one standard deviation of the measured values.
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Al 234
Coburn1 | 893.75 | 893.90 3.5 Whole rock | DIR098 | B | 2.48 | 248 + 0.15
c| 265
Al 193
Coburn1 | 920.30 | 920.45 35 Whole rock | DIR099 | B | 1.95 | 200 + 0.12
c| 215
A | 3.99
Coburn1 | 951.70 | 951.90 3.5 Whole rock | DIR100 | B | 3.42 | 3.93 + 057
c| 455
A | 255
Coburn1 | 1011.40 | 1011.65 3.5 Whole rock | DIR101 | B | 270 | 2.65 + 0.10
c|ar
A | 2.99
Coburn 1 | 1030.00 | 1030.20 35 Whole rock | DIR102 | B | 2.98 | 290 + 0.14
c| 275
A | 2.60
Coburn1 | 150.80 | 151.00 5 Hollow cell, | 0403 [ B | 257 | 256 + 0.04
whole rock
c| 252
Al 164
Coburn1 | 166.30 | 166.50 5 Hollow cell, | 1 eq04 [B [ 103 | 1.75 + 0.15
whole rock
c| 170
GSWA A | 328
Ballythanna | 35.90 | 36.10 3.5 Whole rock | DIR105 | B | 2.80 | 3.24 + 0.50
1 clar9
GSWA Al 315
Ballythanna | 131.90 | 132.05 35 Whole rock | DIR106 | B | 3.17 | 3.18 + 0.05
1 C| 324
GSWA Al 322
Ballythanna | 292.30 | 292.43 35 Whole rock | DIR107 | B | 3.02 | 321 + 0.19
1 c | 3.40
GSWA A | 161
Ballythanna | 358.75 | 358.90 3.5 Whole rock | DIR108 | B | 1.74 | 1.70 + 0.08
1 cl17s
GSWA A | 317
Ballythanna | 397.55 | 397.70 3.5 Whole rock | DIR109 | B | 3.03 | 3.08 + 0.07
1 cl3o0s
GSWA A | 287
Ballythanna | 453.40 | 453.55 35 Whole rock | DIR110 | B | 2.63 | 267 + 0417
1 c| 255
GSWA A | 269
Ballythanna | 461.70 | 461.85 35 Whole rock | DIR111 | B | 2.38 | 256 + 0.16
1
c| 262
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A | 251
Giralia1 | 682.10 | 682.22 3.5 Whole rock | DIR112 | B | 2.97 | 260 + 0.30

c | 239

Al 1.91
Giralia1 | 919.00 | 919.10 3.5 Whole rock | DIR113 | B | 1.87 | 1.98 + 0.18

c| 219

A | 2.99
Kennedy 1530 | 1930 3.5 Whole rock | DIR114 | B | 279 | 2.86 + 0.11
Range 1 9

c | 2.81

A | 351
Kennedy 2005 | 2905 3.5 Whole rock | DIR115 | B | 3.46 | 3.51 + 0.05
Range 1 9

c| 355

Al 298
Kennedy 2015° | 2016 3.5 Whole rock | DIR116 | B | 3.06 | 299 + 0.07
Range 1 6 3

c| 293

Al 184
Kennedy 22100 | 2210 5 Hollow cell, | o147 [8 [ 162 | 1.77 + 0.14
Range 1 6 whole rock

c| 187

Al 313
Kennedy 2817 | 2817 35 Whole rock | DIR118 | B | 2.84 | 293 + 0417
Range 1 9

C | 284

A | 2.40
Kennedy 2819° | 2820 3.5 Whole rock | DIR119 | B | 2.14 | 223 + 0.15
Range 1 6 3

c| 216

Al 123
Kennedy 4163° | 4164 35 Whole rock | DIR120 | B | 1.18 | 127 + 0.3
Range 1 6 3

c| 143

Al 283
Kennedy 4711 | AN 35 Whole rock | DIR121 | B | 259 | 275 + 0.14
Range 1 6

c| 284

A | 253
Kennedy 5104 | 0104 3.5 Whole rock | DIR122 | B | 2.82 | 264 + 0.15
Range 1 9

c | 260

A | 2.37
Kennedy 5484 | 5484 35 Whole rock | DIR123 | B | 225 | 229 + 0.07
Range 1 3 10

c | 226

A | 2.96
Kennedy 5837" | 5oag: 35 Whole rock | DIR124 | B | 315 | 3.04 + 0.09
Range 1 3

c | 3.02

Al 142

15 Hollow F:ell, B | 1.09

Linda2 | 2814.80 | 2815.05 matrix | DIR125 115 + 0.18

c| o099

5 Whole rock D| 1.18
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A | 463
Kennedy 6606 | 0006 3.5 Whole rock | DIR126 | B | 4.80 | 476 + 0.13
Range 1 9
c| 487
GSWA A | 244
Barrabiddy | 781.70 | 781.95 3.5 Whole rock | DIR127 | B | 2.40 | 250 + 0.14
1A c | 266
GSWA A 322
Barrabiddy | 773.90 | 774.10 3.5 Whole rock | DIR128 | B | 3.48 | 3.37 + 0.13
1A c | 342
GSWA A | 214
Barrabiddy | 759.55 | 759.70 3.5 Whole rock | DIR129 | B | 1.81 | 1.80 + 0.30
1A cl 155
GSWA A | 252
Barrabiddy | 669.35 | 669.55 3.5 Whole rock | DIR130 | B | 2.43 | 249 + 0.05
1A c | 2,51
GSWA Al 175
Barrabiddy | 616.90 | 617.10 3.5 Whole rock | DIR131 | B | 1.86 | 1.93 + 0.25
1A c|222
GSWA B | 0.64
Barrabiddy | 617.65 | 617.90 5 Hollow cell, | 10135 0.64 + 0.00
1A whole rock cloe4
GSWA A | 4.00
Barrabiddy | 551.75 | 551.95 3.5 Whole rock | DIR133 | B | 3.85 | 3.93 + 0.08
1A c | 393
GSWA A | 403
Barrabiddy | 467.00 | 467.20 3.5 Whole rock | DIR134 | B | 3.92 | 3.80 + 0.29
1A c | 3.49
GSWA Al 272
Barrabiddy | 213.20 | 213.45 3.5 Whole rock | DIR135 | B | 259 | 255 + 0.18
1A c| 236
GSWA B | 1.45
Barrabiddy | 246.25 | 246.40 5 H‘r’]"cl’wce'l'(' DIR136 142 + 0.04
1A whole roc cl 140
: 8649' B | 243
Quail 1 8649' ' 3.5 Whole rock | DIR137 245 + 003
9 C | 247
A | 482
Quail 1 7319’ 7%1..9 3.5 Whole rock | DIR138 | B | 4.87 | 497 + 024
c| 525
A | 2.09
Onslow 1 3781 3782 5 Hollow cell, | o439 [ B | 1.06 | 202 + 0.09
3 whole rock
c | 0.00
A | 3.06
Onslow 1 42919 4?0 3.5 Whole rock | DIR140 | B | 273 | 291 + 0.17
c| 296
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Al 3.16

Onslow 1 5706' 57996' 35 Whole rock | DIR141 | B | 2.98 | 3.08 + 0.09
C | 3.11
Al 123

Onslow 1 6631' 6%?11' 5 u‘r’]'c'fl"ef"rgi'l'( DIR142 [B | 125 | 119 + 0.08
c | 1.10
A | 327

"ea”gonth 5375' 5:;';5' 3.5 Whole rock | DIR143 | B | 3.23 | 342 + 0.33
C | 383
Al 1.32

Pluto3 | 3056.70 | 3057.00 35 Whole rock | DIR144 | B | 1.45 | 1.35 £ 0.09
C|1.28
A | 2.38

Pluto3 | 3067.20 | 3067.50 35 Whole rock | DIR145 | B | 1.50 | 1.84 + 0.5
c| 178
A | 3.47

Calliance 1 | 3776.00 | 3776.30 3.5 Whole rock | DIR146 | B | 3.18 | 3.33 + 0.15
C | 335
A | 4.47

Brecknock | 3786.80 | 3787.00 35 | Wholerock | DIR147 | B | 443 | 451 + 0.10
C | 462
A | 272

Calliance 1 | 3797.20 | 3797.40 3.5 Whole rock | DIR148 | B | 2.80 | 2.82 + 0.12
C | 295
A | 2.48

B’e°'§”°°k 3825.70 | 3825.90 3.5 Whole rock | DIR149 | B | 2.24 | 229 + 0.17
C| 216
A | 2.37

Yowalga 2 2796' 2799.’.6' 35 Whole rock | DIR150 | B | 2.61 | 256 + 0.18
c | 2.71

Yowalga 2 3242' 32;,2' 5 '\'I'vf]'gl’:’rgi'l'( DIR151 : 2:: 293 + 024
A | 3.14

Bonaparte %77%'.‘::,/ %77‘:.88',',’ 35 | Wholerock | DIR152 | B | 3.16 | 294 + 0.32
C | 2,59
A | 2.20

B°”$Ra”e 689'8" | 690 35 Whole rock | DIR153 | B | 2.17 [ 219 + 0.02
C | 220
3048' | 3948' A | 4.24

Bonaparte 2 33;;/0, 332/0, 3.5 Wholerock | DIR154 | B | 4.39 | 3.92 + 0.58
4 8" C | 332

www . hotdryrocks.com




19

9267 | 9267 Al 177
Bonaparte 4"/ 8"/
A 0263 | 9263 3.5 Whole rock | DIR155 | B | 1.76 | 1.73 + 0.06
4" 8" c| 166
A | 567
B°“$Ka”e 102..76 10;‘..76 3.5 Whole rock | DIR156 | B | 4.67 | 509 + 0.51
C | 5.04
o Al 126
Laminaria | 3544 70 | 3249.90 35 Whole rock | DIR157 124 + 0.03
East 1 B | 1.21
GSWA Hollow cell ALTA
Barrabiddy | 66.00 | 66.30 15 Cel I DIR158 [B | 1.21 | 119 + 0.03
1A matrix
c|1.16
GSWA A | 1.40
Barrabiddy | 127.75 | 127.95 35 Whole rock | DIR159 | B | 1.35 | 1.31 + 0.10
1A c| 120
GSWA Hollow cell ALTo
Barrabiddy | 157.30 | 157.45 5 ' | DIR160 | B | 1.74 | 1.79 + 0.05
1A whole rock
c| 182
A | 420
Turtle 1 | 2488.20 | 2488.50 3.5 Whole rock | DIR161 | B | 4.05 | 411 + 0.08
c | 4.08
A | 2.59
Turtle 1 929.00 | 929.30 3.5 Whole rock | DIR162 | B | 2.65 | 260 + 0.05
c | 256
A | 2.34
Tule 1 | 93245 | 932.70 5 Hollow cell, | 0163 [ B | 2.36 | 238 + 0.05
whole rock
C | 244
Al 214
Turtle 1 | 1441.65 | 1441.85 3.5 Whole rock | DIR164 | B | 2.67 | 229 + 0.31
c| 213
Al 317
Turtle 1 | 1599.65 | 1599.95 3.5 Whole rock | DIR165 | B | 3.24 | 319 + 0.05
c| 315
Al 232
Turte 1 | 1601.50 | 1601.75 3.5 Whole rock | DIR166 | B | 2.45 | 2.35 + 0.09
c| 228
Al 2.71
Turtle 1 | 1612.00 | 1612.30 35 Whole rock | DIR167 | B | 2.66 | 287 + 0.39
c| 335
A | 2.71
GSWA 165.90 | 166.10 5 Hollow cell, | o168 [ B | 2.53 | 256 + 0.14
Empress 1A whole rock
C | 2.44
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Al 228
GSWA 127.05 | 127.20 5 Hollow cell, | o169 [ B | 221 | 219 + 0.10
Empress 1A whole rock
c | 2.09
Al 332
GSWA | 11615 | 116.40 35 Whole rock | DIR170 327 + 007
Empress 1A B | 3.22
A | 2.49
GSWA 29425 | 294.60 5 Hollow cell, | o474 (8| 238 | 244 + 005
Empress 1A whole rock
C | 244
A | 2.47
GSWA | 10670 | 107.00 5 Hollow cell, | 0170 (B8] 2.44 | 249 + 0.05
Empress 1A whole rock
C | 254
Al 155
GSWA 284.70 | 284.90 3.5 Whole rock | DIR173 | B | 1.58 | 1.57 + 0.02
Empress 1A
c| 158
A | 2.21
GSWA 367.80 | 368.00 5 Hollow cell, | 12474 226 + 007
Empress 1A whole rock B | 2.31
A | 3.07
GSWA | 35180 | 352.00 5 Hollow cell, | 0175 [ 299 | 305 + 005
Empress 1A whole rock
c | 3.09
Al 161
GSWA | 43150 | 431.70 15 Hollow cell, | heq76 [B | 1.75 | 155 + 0.21
Empress 1A matrix
c| 134
A | 468
GSWA 504.65 | 504.85 3.5 Whole rock | DIR177 | B | 4.80 | 461 + 0.23
Empress 1A
c| 436
Al 143
GSWA | 603.80 | 604.00 15 Hollow cell, | 2478 [B [ 129 | 143 + 0.16
Empress 1A matrix
c| 160
A | 3.04
GSWA | 56830 | 568.50 35 | Wholerock | DIR179 | B | 3.03 | 296 + 0.12
Empress 1A
c| 283
A | 3.87
GSWA 651.40 | 651.70 3.5 Whole rock | DIR180 | B | 4.32 | 402 + 025
Empress 1A
c | 390
Al 213
GSWA 74350 | 743.80 3.5 Whole rock | DIR181 | B | 3.71 | 3.02 + 0.99
Empress 1A
c|395
Al 278
GSWA | 0500 | 806.10 35 | Wholerock | DIR182 | B | 210 | 241 + 0.34
Empress 1A
C | 244
A | 3.97
GSWA | 93100 | 931.30 35 | Wholerock | DIR183 | B | 434 | 418 + 0.19
Empress 1A
C| 425
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Al 434
GSWA | 1412210 | 1122.40 35 Whole rock | DIR184 | B | 4.44 | 424 + 025
Empress 1A
c | 397
Al 178
GSWA | 109110 | 1091.30 3.5 Whole rock | DIR185 | B | 222 | 1.78 + 0.36
Empress 1A
c| 150
A | 565
GSWA | 147590 | 1076.20 3.5 Whole rock | DIR186 | B | 5.53 | 554 + 0.11
Empress 1A
C | 543
Al 214
GSWA | 199330 | 1223.55 3.5 Whole rock | DIR187 | B | 2.16 | 218 + 0.06
Empress 1A
c| 225
A | 565
GSWA
1309.65 | 1309.80 3.5 Whole rock | DIR188 | B | 5.25 | 525 + 0.37
Empress 1A
c| 492
A | 2.60
GSWA | 1409.40 | 140955 35 | Wholerock | DIR189 | B | 2.82 | 268 + 0.12
Empress 1A
c| 263
Al 213
GSWA | 140375 | 1403.95 5 Hollow cell, | 1 2190 209 + 0.06
Empress 1A whole rock Cc | 2.04
Al 165
GSWA | 453170 | 1531.90 3.5 Whole rock | DIR191 | B | 1.57 | 1.61 + 0.04
Empress 1A
c| 162
A | 2.34
GSWA | 1603.60 | 1603.80 3.5 Whole rock | DIR192 | B | 2.25 | 230 + 0.05
Empress 1A
c | 230
A | 2.09
GSWA | 1558.90 | 1559.20 35 | Wholerock | DIR193 | B | 2.08 | 205 + 0.5
Empress 1A
c|1.99
A | 4.37
B°°“‘1’a""a” 302.20 | 302.40 35 Whole rock | DIR194 | B | 4.55 | 445 + 0.09
C | 4.44
A | 147
B°°”?a""a” 613.30 | 613.50 3.5 Whole rock | DIR195 | B | 1.40 | 1.43 + 0.04
c| 143
A | 4.80
B°°”?a""a” 612.35 | 612.60 3.5 Whole rock | DIR196 | B | 4.90 | 481 + 0.09
c| 473
Al 218
B°°“‘1’a""a” 1365.40 | 1365.60 35 Whole rock | DIR197 | B | 2.32 | 225 + 007
c| 226
Al 419
B°°“‘1’a""a” 834.60 | 834.80 35 Whole rock | DIR198 | B | 4.42 | 445 + 030
c| 479
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Al 222
B°°“‘1’a""a” 349.60 | 349.80 35 Whole rock | DIR199 | B | 2.08 | 217 + 008
c| 223
Al 134
BMR . -
30 11" | 31'7 3.5 Whole rock | DIR200 | B | 1.31 | 1.33 + 0.01
Browne 1
c| 133
Al 132
BMR 325' | 325'6" 5 Hollow cell, | eo01 [ B [ 1.25 | 130 + 0.04
Browne 1 whole rock
c| 134
Al 127
BMR 192' 1" | 192 7" 5 Hollow cell, | 2000 125 + 0.03
Browne 1 whole rock B | 1.23
Al 252
BMR Neale 369' 369"
IAAD o e 3.5 Whole rock | DIR203 | B | 2.68 | 260 + 0.08
c | 261
B|1.73
BMR Neale 327 | 3277 35 Whole rock | DIR204 216 + 0.81
1A-1B D| 287
A | 159
BMR Neale 308' | 308'9" 5 Hollow cell, | 1 eo05 [ B | 155 | 159 + 0.05
1A-1B whole rock
c| 164
BMR 200' 20(.). 3.5 Whole rock | DIR206 Specimen not measured
Throssell 1 10
BMR Al 150
Glenburgh 192 192' 6" 3.5 Whole rock | DIR207 | B | 1.58 | 1.53 + 0.05
9
1.50
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4. Discussion and Conclusions
4.1 Bonaparte Basin

The range of thermal conductivity values from the Bonaparte basin is from 1.24—
5.09 W/mK, shown by specimens DIR157 and DIR156 respectively, which is a vari-
ability of up to a 79% from mean basin conductivity of 2.84 W/mK. The standard de-
viation between all 13 samples representing the Bonaparte basin is approximately
1.040.

4.2 Browse Basin

The range of thermal conductivity values from the Browse basin is from 2.29—

4.51 W/mK, shown by specimens DIR149 and DIR147 respectively, which is a vari-
ability of up to a 39% from the mean basin conductivity of 3.24 W/mK. The standard
deviation between all four samples representing the Browse basin is approximately
0.820.

4.3 Carnarvon Basin

The range of thermal conductivity values for the Carnarvon basin is from 0.64—

4.97 W/mK, shown by specimens DIR138 and DIR132 respectively, which is a vari-
ability of up to a 97% from the mean basin conductivity of 2.52 W/mK. The standard
deviation between all 61 samples representing the Carnarvon basin is approximately
0.890.

4.4 Officer Basin

The range of thermal conductivity values for the Officer basin is from 1.25-

5.54 W/mK, shown by specimens DIR202 and DIR186 respectively, which is a vari-
ability of up to 103% from the mean basin conductivity of 2.73 W/mK. The standard
deviation between all 40 samples representing the Officer basin is approximately
1.170. Thermal conductivity of specimen DIR206 was not measured due to poor

sample quality.
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The following additional points must be considered if extrapolating the results in this

report to in situ formations:

1.The samples upon which the thermal conductivity measurements were made
are only several square centimetres in surface area. While the specimens
were chosen to represent the geological sections from which they came, there
is no guarantee that the sections themselves are typical of the overall
geological formations. This is especially true for heterogeneous formations.

This introduces an unquantifiable random error into the results.

2.Porosity exerts a primary influence on the thermal conductivity of a rock. Water
is substantially less conductive than typical mineral grains®, and water
saturated pores act to reduce the bulk thermal conductivity of the rock. Gas-
filled pores reduce the bulk conductivity even more dramatically. Results
reported in this document are whole-rock measurements. No adjustments
were made for porosity. It is to be expected that the thermal conductivity of a
given formation will vary from place to place if the porosity of the formation

varies (conductivity decreases with increasing porosity).

3.Thermal conductivity of rocks is sensitive to temperature?, typically decreasing
at a rate of around 0.16% per °C. This should be kept in mind when

developing models of in situ thermal conductivity.

> Beardsmore, G.R. and Cull, J.P. (2001). Crustal heat flow: A guide to measurement and modelling. Cam-
bridge University Press, Cambridge. 324pp.

www . hotdryrocks.com



Further details of geological products produced by the

Geological Survey of Western Australia can be obtained by contacting:

Information Centre

Department of Mines and Petroleum

100 Plain Street

EAST PERTH WESTERN AUSTRALIA 6004
Phone: (08) 9222 3459 Fax: (08) 9222 3444
www.dmp.wa.gov.au/GSWApublications
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