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Novel geochronology
Can’t see for Miles: In situ mica Rb–Sr geochronology

from the Rudall Province

Muscovite Rb–Sr isochron defining a date corresponding 
to the 654–509 Ma Paterson Orogeny 
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Rb–Sr model ages calculated for the same sample shown at left hand side (115893), 
87 86calculated using reasonable crust and mantle Sr/ Sr  ratios of 0.70 (pink), 0.73 0

(blue) and 0.76 (orange), to highlight the spread of model ages spanning the 
proposed Miles Orogeny timeframe, that we interpret to be due to mixing between 
the 654–509 Paterson Orogeny and older Mesoproterozoic events. Histogram bin 
width is based on the average 2σ uncertainty for model ages for individual analyses
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Plot of Rb–Sr isotopic data for a sample showing 
scatter rather than defining an isochron
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For more information, contact:
David Kelsey (david.kelsey@demirs.wa.gov.au)
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Muscovite Rb–Sr isochron defining a date corresponding 
to the 1377–1275 Ma Parnngurr Orgeny   
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Location map of the Rudall Province, showing the three terranes and the analysed sample locations and isochron 
dates. Samples with no date label did not define an isochron but rather a spread in data. Coloured geology polygons 
are taken from the State interpreted bedrock geology polygons 1:500 000 (2016) GIS layer
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A longstanding point of conjecture in the evolution of the Paterson Orogen in 
northern Western Australia is the age of the Neoproterozoic Miles Orogeny. The 
Miles Orogeny is thought to be characterised in outcrop by regional D3 and D4 
structures that were subsequently overprinted by D5 and D6 structures during 
the 654–509 Ma Paterson Orogeny. However, existing quantitative age 
constraints for the Miles Orogeny have large uncertainties and define a time 
frame of approximately 840–750 Ma, all from low-temperature hydrothermal 
rocks at Nifty mine and Kintyre prospect.
We obtained in situ mica Rb–Sr geochronology from crystalline meta-igneous 
and metasedimentary rocks within the Rudall Province to try to constrain the age 
(and existence) of the Miles Orogeny.
Isochrons yielded three Paterson Orogeny ages (623 ± 28 Ma muscovite, 
637 ± 9 Ma biotite and 612 ± 8 Ma biotite) and one Parnngurr Orogeny age 
(1281 ± 40 Ma muscovite). The other two isochrons were 1214 ± 60 Ma 
(muscovite) and 1242 ± 12 Ma (muscovite). Strikingly, no isochron ages, nor 
definitive Rb–Sr model ages, were obtained for the Miles Orogeny. Therefore, it 
is likely that existing and new age data for the proposed Miles Orogeny represent 
either a hydrothermal fluid flow event, in which case ‘Orogeny’ is not appropriate 
terminology, or that it represents mixing of Paterson Orogeny and 
Mesoproterozoic age components. 
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One line of evidence for an absence of melt sources dominated by sedimentary rocks is the complete lack of S-type granites in both cratons. 
The late, low-Ca leucogranites, which in both cratons are most directly spatially, temporally and compositionally linked with Li-pegmatites, have 
metaluminous [Aluminium saturation index (ASI) < 1], rather than peraluminous (ASI >1), parental magmas, precluding a sediment rich source.

Li-pegmatites in both the Yilgarn and Pilbara Cratons lie along or near contacts between 
regional granitic crust and greenstone belts (a relationship frequently noted but not 
understood). Low-Ca leucogranites mainly occupy the granite ‘seas’ between greenstones 
belts but become more Li-rich closer to greenstone contacts

Heat map over Li vs SiO  data cloud for low-Ca leucogranites from the Yilgarn Craton. The trend to increasing Li with 2

increasing SiO  is the expected igneous trend but the trend to low Li at SiO  values above 73–74 wt% most likely reflects 2 2

primary or secondary loss of Li to the crystallising assemblage. Irrespective, whole rock Li concentrations are a very poor 
reflection of (minimum) magmatic Li concentrations. Nevertheless, low-Ca leucogranites in the Yilgarn Craton (insufficient 
data for Pilbara leucogranites) clearly fractionate to 'anomalously' enriched (>30-40 ppm) compositions by ~73 wt% SiO  2

The source for the Li-enriched leucogranites is isotopically similar to that of mantle-
derived high-Mg diorite (sanukitoid), emplaced into greenstone belts prior to 
2650 Ma representing the most isotopically and chemically primitive felsic 
component of the Yilgarn (and Pilbara) Craton

These Li-enriched low-Ca leucogranites also 
concentrate along greenstone–granite contacts, 
where they contribute to a radiogenic isotopic halo 
characterising the source of late leucogranites 
surrounding the greenstone belts. Bottom-of-hole 
drilling results demonstrate the same relationship 
( . see Pegmatite-hosted lithium prospectivty poster)
This supports a connection with Li-pegmatites but 
intriguingly also indicates that the crustal source 
region for Li-rich leucogranites was biotite-rich crust 
adjacent to greenstone belts and comprised fusible 
material as young and as isotopically juvenile as the 
high-Mg diorites 
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Zircon saturation temperature vs zircon crystallisation age (U–Pb in zircon) for low-Ca leucogranites from the Yilgarn Craton. Like Yilgarn 
Li-pegmatites, samples enriched in Li are mainly younger than c. 2650 Ma. In this period, they are accompanied by a Nb-enriched low-Ca 
leucogranite population formed at distinctly higher temperatures. The Li-enriched low-Ca leucogranite population formed at lower 
temperatures and is also distinctive in forming through melting of younger (lower T  ), more radiogenic, source regions than the    
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GSWA’s Archean granite project has acquired a strong Li-bias with sampling now concentrating on the younger low-Ca 
leucogranite components of both the Yilgarn and Pilbara Cratons. In addition to providing a useful geochemical dataset to 
Industry, one of our aims is to reconcile field data with prevailing Li-pegmatite models.
Lithium-pegmatites are thought to form either through direct anatexis of Li-rich crust or through extreme fractionation of granitic 
melts. Geochronological and isotopic data (Kendall-Langley et al., 2020; Lithos, 352–353) strongly favour the latter model for 
Li-pegmatites in the Archean of Western Australia.
Phanerozoic studies have strongly influenced Li-exploration models which, in the case of granite fractionation models, posit 
that Li-pegmatite are extracted from granites formed through melting sedimentary-rock dominated crustal source (i.e. S-type 
granites). Such models are applied to Archean terranes — but the Yilgarn and Pilbara Cratons, which contribute most of the 
world’s hard-rock Li, contain no sedimentary sequences that represent a viable melt source. 

The Li-carrying capacity of any crustal melt source is linked to its mica content. With 
than in mind we look at leucogranite compositions in an attempt to identify mica-rich 
crustal components, other than metasediments, that might form a crustal melt source.

The radiogenic halo surrounding greenstone belts is primarily a result of infusion of greenstone root zones and adjacent crust by strongly 
hydrated mantle-derived magmas late in greenstone evolution — but before Li-pegmatite and low-Ca leucogranite formation. This hybridised 
crust reflects one of the most voluminous components of the sub-greenstone crust. Where these mantle-derived intrusions are exposed, they 
form biotite-rich country rock alteration zones containing up to 300 ppm Li. Potential sources of this Li include sanukitoid-related magmatic fluids 
(i.e. derived from enriched lithospheric mantle) and Li sequestered from country rock, including seawater altered greenstone.
If no viable ‘traditional’ source exists for the leucogranites and assocciated Li-pegmatites in the Yilgarn or Pilbara Cratons, we must look at 
alternative sources. We are currently investigating the possibility that the required biotite-altered crustal source formed as juvenile, mantle-
derived, dioritic magmas (sanukitoid) invaded the root zones of greenstone belts late in greenstone evolution. Melting of this source to produce 
low-Ca leucogranite, and subsequent fractionation to form pegmatite, explains the empirical spatial link between Li-pegmatite and 
greenstone–granite contacts as well as the unusually juvenile isotopic signature of Li-enriched Yilgarn leucogranites. 

Mineral Systems Atlas
Pegmatite-hosted lithium prospectivity (in prep)

A mineral system-based hybrid data-rich, knowledge-driven approach was used to produce a series of 
predictor maps thought to represent critical components of pegmatite-hosted lithium mineralisation. 
Predictor maps were calibrated using a dataset of 138 310 exploration drillholes with harmonised maximum 
lithium grades. Fuzzy logic was employed to combine predictor maps into a final prospectivity map. The 
results of this map correlate well with known Li resources in Western Australia, and highlight areas for 
further exploration, while considerably reducing the search area of the State. 

The Mineral Systems Atlas (MSA) seeks to help anyone 
who wants to find exploration-relevant spatial data and 
information presented in a logical mineral systems-based 
framework. Each system is accompanied by an online 
MSA Guide and GSWA Record. The online guide presents 
information on each spatial layer, the primary data from 
where it was derived, and any filters or query models used. 
The Li prospectivity map, intermediate predictor maps and 
input datasets will be published on the MSA and the Data 
and Software Centre as part of the Rare-element 
pegmatite system along with an explanatory note Record, 
allowing the end-user to recreate the map or combine this 
approach with their own datasets.

For more information, contact:
Nathan Bowman (nathan.bowman@demirs.wa.gov.au)
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Each predictor map was rasterised using a standard 1 km cell size, with 
each cell being assigned a relative prospectivity value. This example 
used the relative prospectivity rating for Sm–Nd Total Crustal Residence 
times. Red represents the highest rating, orange a medium rating, with 
green representing the lowest. Blue denotes insufficient data 
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Predictor maps were combined to form a summary map for each major component of the mineral system, and 
these were then combined to produce the final image. Higher relief and red–orange colours depict higher 

prospectivity values and lower relief and blue colour depict lower prospectivity values
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Harmonised exploration drillhole data:
a) rank order plot of maximum lithium grade, showing the cut-off grade  
of 100 ppm used to classify holes as mineralised;
b) distribution of the mineralised (red) and unmineralised (blue) drillholes

Unmineralised  (<100 ppm Li) LL

Source

Pathway

Trap

Mineralised (>100 ppm Li)

10 000

1 000

100

10

1
0 20 40 60 80 100 120

Li
 (p

pm
)

Cumulative sample count (’000)

b)a)

Yilgarn Craton
Radiogenic heat production provides a thermal
threshold for cratonisation of the Yilgarn Craton

Figure 1. Simplified map of the Yilgarn Craton, showing geochemistry sample locations 
(n = 5545), Archean metamorphic data (n = 30) plotted as median peak apparent 
thermal gradient (with peak metamorphic age in Ma), and the location of published 
(intepreted) seismic lines 

Figure 3. Heat production maps of the Yilgarn Craton, based on whole-rock geochemistry of all 
least-altered samples shown in Figure 1:
(A) Present-day, with surface heat flow
(B) Heat production calculated at 2640 Ma. Maps generated with natural neighbor interpolation 
using natural breaks in data values
All colours except the darkest green represent heat production values higher than typical 
crustal values 

The magnitude of radiogenic heat production in the Yilgarn Craton has been 
underestimated in previous studies, resulting in an underappreciation of its 
role in crustal evolution and mineralisation (Au ± Ni) processes. It may also 
play a critical role in promoting the melting of Li-bearing source regions. 
A striking feature of the Yilgarn Craton (Fig. 1) at the current erosional level is 
an abundance of high-K (low-Ca) granites with radiogenic heat production 
elevated far above global crustal averages (Fig. 2). Extrapolated back in 
time, the total thickness and contribution to crustal heat production and heat 
flow from these granites was greater, implying that the deeper crustal 
sources must also have been elevated in radiogenic heat production.

A heat production map (Fig. 3A) shows that vast tracts of the 
exposed surface have heat production that is significantly higher 
than global average granite (grey line on Fig. 2A). High-heat 
production at the surface coupled with low- to moderate surface 
heat flow (Fig. 3A) implies that modern day heat production at 
depth must be lower, consistent with extraction of heat-producing 
elements (K, Th, U) from deeper sources to produce these upper 
crustal radiogenic granites. The median heat production at 

32640 Ma for the felsic groups ranges from 3.5 to 8.8 µW/m  (Fig. 
2B), and the heat production map for 2640 Ma (Fig. 3B) shows 
that the lithologies at the exposed surface would have had 
considerable heat production in the past. 

We conducted 1D thermal models underpinned by geological 
and geochemical constraints.The models attempt to reconstruct 
a simple but realistic crustal evolution based on the existing 
stratigraphic and magmatic framework (Fig. 4A).
The modelled thermal gradients at 2760–2650 Ma (blue and 
green lines; Fig. 4B) capture many of the older metamorphic data, 
indicating elevated thermal conditions in the crust for 100s Ma.
The younger metamorphic record is best explained by 
(significant) advective heat (dashed red line, Fig. 4B). That is, the 
late ‘bloom’, high-K granites caused an advective thermal regime 
superimposed on that caused by radiogenic heating alone, 
resulting in regional contact metamorphism.

Figure 4. Results of the thermal modelling:
(A) Model setup, with calculated heat production values shown in brackets
(B) Calculated thermal gradients and metamorphic data (plotted as median peak P, T); 

3assuming a crustal density of 2.8 g/cm  

The predicted thermal gradients intersect the tonalite wet solidus 
at about 20 km depth, and both dehydration curves at 25 km 
(Fig. 4C), implying that for a protracted period the mid to deep 
crust that was near to, at or above conditions for partial melting, 
and primed for melting by an internal driver.
Over time, advective movement of progressively more 
radiogenic heat production to the shallower crust results in two 
complementary outcomes:
Ÿ refractory crust at deeper levels
Ÿ long-term cooling
The widespread granite ‘bloom’ at 2650–2600 Ma records the 
final time that the crust was fertile enough to melt in large 
volumes, as well as the thermal gradient being hot enough to 
intersect the solidus (Fig. 4D). 

Figure 4 (continued). Results of the thermal modelling:
(C) Results from Model 2
(D) Results from Model 3. Solidi curves from Bodorkos and Sandiford (2006)

References cited:
Bodorkos, S and Sandiford, M 2006, Thermal and mechanical controls on the evolution of Archean crustal deformation: examples from Western Australia, in Archean Geodynamics and Environments 
edited by K Benn, J-C Mareschal and KC Condie: American Geophysical Union, Geophysical Monograph Series 164, p. 131–147, doi:10.1029/164GM10.

Vanderhaeghe, O, Guergouz, C, Fabre, C, Duchêne, S and Baratoux, D 2019, Secular cooling and crystallization of partially molten Archaean continental crust over 1 Ga: Comptes Rendus 
Geoscience, v. 351, no. 8, p. 562–573. 

Figure 2. Box and whisker plots of calculated heat production for the key 
lithological groups considered in this work:
(A) Present-day
(B) 2640 Ma

3(1) Grey line is average granite (= 2.5 µW/m ; Haenel et al., 1988)
3(2) Red line is mean felsic value for the Yilgarn Craton (= 1.88 µW/m ; Hawkesworth 

and Jaupart, 2021).
Note some extreme outliers plot beyond the range shown 

For more information, contact:
Fawna Korhonen (fawna.korhonen@demirs.wa.gov.au)
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The 2780–2630 Ma Fortescue Basin of the Pilbara provides an opportunity to look at a nearly pristine and continuous Archean 
volcanic succession, equivalent in age to the greenstone belts of the Eastern Goldfields. This project uses high-quality whole 
rock major and trace element data from a number of drillholes and detailed outcrop traverses through the igneous rocks of the 
Fortescue Group, to provide a geochemical barcode for the succession. The geochemical data aids the correlation of the 
stratigraphy across the whole Fortescue Basin, previously established in several smaller mapping projects. The distribution 
and petrogenetic interpretations of the data help to uncover the ancient topography to the volcanic eruptions and identify major 
rift zones and fissures.

An example of correlated stratigraphic logs of 
drillcores from DD84MF1, DD86WRL1, 
DD86BMW1 and DD86BMW2b.
Using the previous mapping and drillcore 
logging as a basis for the broad stratigraphy, 
the geochemical sampling throughout the 
stratigraphy has identified several 
geochemical groups within each formation 
and enabled us to refine the formation 
boundaries. The main modifications to the 
stratigraphy include:
Ÿ Differences between Mount Roe Basalt 

from west to east
Ÿ Redefining the boundary between the 

subaqueous basalts of the Boongal 
Formation and subaerial basalts of the 
Kylena Formation

Ÿ Relative timing of the Tumbiana and 
Pyradie Formations

Ÿ Identification of fissures and main rift zones 
(southern and eastern Pilbara margins) at 
various times during the deposition of the 
succession

An example of data from a detailed geochemical traverse in the 
Bellary Anticline near the southern margin of the South Pilbara 
Sub-basin shows significant geochemical variation both within 
formations and up the stratigraphy. Geochemical variation 
diagrams identify compositionally unique units that fall into high-
Th, intermediate-Th and low-Th groups (a) and have 
compositions ranging from the MORB to Continental Arc fields (b). 
Summary of interpretations:
Ÿ The high-Th magmas of the Boongal and Bunjinah Formations 

show the highest degree of crustal assimilation and were most 
likely stored in the crust prior to eruption. Fractional 
crystallisation is a secondary control with more limited influence 
for these formations, suggesting their rapid emplacement. 

Ÿ The high- and intermediate-Th groups of the Mount Roe Basalt 
evolved mostly through assimilation and fractional 
crystallisation processes and were fed through north-
northeasterly-trending Black Range dykes. 

Ÿ Intermediate-Th groups such as those of the Pyradie Formation 
have low Th/Yb, suggesting minimal crustal contamination but 
fractional crystallisation is a stronger control. They are higher 
degree, deeper melts, potentially of plume origin. 

Ÿ The low-Th Jeerinah Formation has MORB-like geochemistry, 
generated from depleted upper mantle, along the southern 
Pilbara margin and consistent with passive margin setting. 

Ÿ There is strong evidence to suggest that much of the Fortescue 
sequence in the South Pilbara Sub-basin was fed from a rift 
zone along the southern margin of the Pilbara.

For more information, contact:
Heather Howard (heather.howard@demirs.wa.gov.au)

As nations embrace renewable energy transitions and the expansion of digital technologies, the demand for copper is poised 
for significant growth. Covering roughly 12% of Western Australia (WA), the Officer Basin has the potential to contain economic 
sediment-hosted copper (SedCu) deposits but remains mostly underexplored. Initial Geological Survey of Western Australia 
(GSWA) investigations into Officer Basin legacy data and material have yielded significant shows of subeconomic copper 
mineralisation or enrichment with SedCu signatures.

Ÿ The intracratonic Officer Basin is predominantly Neoproterozoic, 
overlying older Mesoproterozoic to Archean sedimentary, igneous and 
metamorphic rocks.
Ÿ An initial review of the basin's stratigraphy and characteristics showed a 

conceptual fit for the SedCu mineral system.
Ÿ A review of legacy data and reports, including from petroleum 

exploration, found several occurrences of SedCu indicators.
Ÿ GSWA core library drill core with SedCu indicators or potential trap 

lithologies were selectively sampled, with results further supporting the 
hypothesis.
Ÿ These initial investigations focused on the lesser explored central and 

eastern areas of the WA Officer Basin.
Ÿ More work to follow, including further sampling of legacy material and 

basin analysis.

The standard SedCu mineral system model after 
Hitzman et al. (2005) ideally requires an intracratonic 
basin with: (a) a copper source in the form of basal 
oxidised siliciclastic, volcanic or basement rock units; (b) 
a carbonate–evaporite hydrologic seal to help supply 
and constrain Cu-scavenging brines to the basal 
oxidised units; (c) a trigger that initiates Cu-enriched 
brine flow up the stratigraphy, in conjunction with; 
(d) fluid pathways such as faults, unconformities, 
stratigraphic pinchouts, or salt diapirs, transporting and 
focussing the Cu-enriched brines to; (e) a reductant in 
the form of reduced lithologies (e.g. carbonaceous 
siltstones — a reduced facies deposit style), mobile 
hydrocarbons (e.g. Sour Gas - H S - a sandstone/Revett 2

deposit style), or organic matter (a redbed deposit style).
These mineral system components are present within 
the Officer Basin as (a) Basal sandstone units, Archean 
(Yilgarn) and Mesoproterozoic basement units; 
(b) Browne Formation salt and carbonate units; (c) and 
(d) Multiple regional orogenies, mafic volcanism, salt 
tectonics, faulting and basin compaction; (e) reducing 
lithologies within Tonian formations, hydrocarbons or 
organic matter throughout the stratigraphic sequence 
(at time of mineralisation).

GSWA has identified several new occurrences of trace to subeconomic copper 
mineralisation in the central and eastern WA Officer Basin. These, along with 
legacy data and recent modelling by Geoscience Australia (Cloutier et al., 2023), 
support the potential for SedCu deposits in the Officer Basin. Ongoing work, 
along with other GSWA initiatives, such as WA Array, could help narrow the 
search space for SedCu deposits in the Officer Basin.

For more information, contact:
Matt Clarke (matt.clarke@demirs.wa.gov.au)

Schematic of possible hydrocarbon traps in the eastern WA Officer 
Basin, which includes GSWA Vines 1, from D’Ercole et. al. (2005). 
These structures could also act as pathways or traps for Cu-enriched 
brines, with reducing lithologies or hydrocarbons/organic matter acting 
as reductants. The salt rupture zone of the Officer Basin presents 
opportunities for basal Cu-enriched brines to traverse much of the 
stratigraphic sequence

Stratigraphy of WA Officer Basin, including hydrocarbon shows. 
Potential SedCu source, trap and seal units have been delineated, 
along with known Cu indicator occurrences in their host formations 
Note: Where structural pathways allow, Cu-enriched brines can 
interact with trap lithologies and develop mineralisation throughout the 
stratigraphic sequence 

Officer Basin sedimentary formations, their observed copper indicators 
and host lithologies. Cu sulfides range from trace chalcopyrite to sub-
economic bornite–chalcocite–chalcopyrite mineralisation 
Note: Despite none of the above drillholes or wells specifically targeting 
SedCu deposits — and with only BH01 and BH02 focusing on 
metalliferous commodities — they still revealed several occurrences of 
trace sulfides to subeconomic mineralisation, highlighting the Officer 
Basin's potential

Polished thin section image in reflected light from the GSWA Vines 1 
stratigraphic drillhole at 340 m, showing a copper sulfide mineral assemblage 
(bornite–chalcocite–chalcopyrite±covellite) within Wahlgu Formation 
fluvioglacial sandstone. This is from a 15m to 20m thick interval, between 334 m 
to 354 m depth, of sub-economic mineraliszation with assays of up to 3210 ppm 
Cu, 7.22 ppm Ag, and an approximate average approaching 1000 ppm Cu and 
1.7 ppm Ag*. Stratigraphically, this zone is near the unconformity with the 
overlying Lungkarta Formation, with GSWA Vines 1 situated close to the basin 
margin with the Musgrave Province. This may represent an unconformity and 
basin margin stratigraphic pinchout trap, with a chemical reductant in the form of 
mobile hydrocarbons or organic matter
*estimated from discontinuous sampling

Disseminated chalcopyrite within a dolomitic edgewise conglomerate (offshore 
transition facies) of the Woolnough Member from EIS drillhole OB002 at 513 m. 
OB002 displays several zones of copper enrichment within seemingly more 
reduced intervals of dolomite conglomerate, stromatolitic dolomite and very 
fine-grained sandstone between approximately 500 and 590 m, in the 
Woolnough Member to Lower Browne Formation. Copper sulfides have also 
been observed in anhydrite–carbonate veins and veinlets. The trace 
mineralisation in this drillhole may represent a more reduced facies style. Of 
note, the drillhole is located only 4 km southwest from an interpreted major 
lithospheric structure, and 30 km southwest of the basin’s northern margin

Core from stratigraphic drillholes GSWA Lancer 1 (left) and GSWA Empress 1A 
(right). The left image shows assayed partially black siltstones (boxed in red), 
returning up to 404 ppm Cu, 7.65 ppm Ag, and elevated trace elements including 
As, Co, Mo, Pb, V, U and Zn — a geochemical signature aligning with reduced-
facies SedCu mineralisation. The right image is of probable chalcopyrite in 
vuggy dolomite from a zone of high Cu/Sc (up to 101) and V/Sc (up to 57), and 
elevated trace elements including Ba, Ge and Mo, over an approximately 30 m 
thick interval. These two examples are from drillholes over 250 km apart yet 
show copper enrichment at similar depths (approximately 500 m) and at a 
similar stratigraphic position — near the unconformity with the overlying Wahlgu 
Formation
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observationAgeFormation

BH01
BH02

Sandstone, siltstone,
(incl. stromatolitic)Ediacaran–CambrianWoora Woora

Hussar 1SandstoneEdiacaran–CambrianLungkarta

GSWA Vines 1 
Hussar 1

Diamictite/sandstone,
Calcareous siltstoneCryogenianWahlgu

GSWA Vines 1Siltstone/mudstone (dolomitic)CryogenianPirrilyungka

GSWA Empress 1ADolomite (incl. vuggy), very fine
grained sandstone/siltstoneTonianSteptoe 

GSWA Lancer 1
 Lungkarta-1/ST1Siltstone, shaleTonianKanpa

Hussar 1Carbonate siltstone,
calcareous sandstoneTonianHussar

OB002Dolomitic conglomerateTonianWoolnough
Member

OB002, Dragoon 1
Yowalga3

Sandstone, dolomite (incl.
stromatolitic), anhydrite+carb
veins, anhydrite-mudstone,
mudstone
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