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5. PLS modelling 
The potential for modelling geochemical indices, such as the Mg# 
(Mg/(Mg+Fe)) from SWIR hyperspectral data has been known since many 
years (e.g. Laukamp et al., 2012). For this project the potential use of SWIR 
and TIR data was evaluated for modelling three geochemical indices, that 
are commonly use to characterise basement lithologies: 
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Introduction 
Cretaceous and Cenozoic sediments cover a 
vast area of unknown Precambrian crust 
underlying the Bight and Eucla Basins. 
HyLogged drill core, obtained as part of 
GSWA's Eucla basement stratigraphic 
drilling program, provides valuable 
information about this underexplored area.  
Particular attention was paid to the 
relationship between mineralogical and 
geochemical variations in the basement, 
including the modelling of drill core 
geochemistry along the drill core by means 
of hyperspectral drill core data.  
Results can be used to I) advance  
stratigraphic correlation of basement and 
cover rocks based on objective drill core 
mineralogy, II) map intensity of weathering 
of basement, and III) map mineralogical and 
physicochemical gradients potentially 
related to hydrothermal systems. 

Haig area Forrest area 

Simplified stratigraphic correlation between seven drill holes from the Haig 
and Forrest areas (modified after Scheib, 2014). HyLogged drill cores 
indicated by red arrows (blue: presented in this poster). 

Recipe 
1. Major and minor element XRF geochemistry was provided by GSWA 

2. High-resolution RGB-imagery, visible-near infrared (390-1000nm), 
shortwave (1000-2500nm), and thermal infrared (6500-14500nm) 
reflectance spectra were acquired from drill cores using a HyLogger3 
located at GSWA's drill core library in Carlisle. 

3. Combined acquisition of VNIR, SWIR and TIR data allowed the 
characterisation of most major rock forming minerals, such as 
carbonates as well as hydrous and anhydrous silicates. 

4. Analyses of mineral assemblages and modelling of geochemical indices 
was performed using The Spectral Geologist software 
(https://research.csiro.au/thespectralgeologist/). 

5. A Partial Least Squares (PLS) regression method was applied to model 
geochemical indices from hyperspectral data by using GSWA's 
geochemical analyses as calibration samples. 

6. Modelled geochemical indices allow more detailed characterisation of 
basement rock types. 

 

E-MORB High Mg E-MORB Adakite 

Publically available hyperspectral drill core data of the 
National Virtual Core Library (NVC) can be accessed via 
AuScope's Discovery Portal 
(http://portal.auscope.org/portal/gmap.html) and the 
respective State and Territory Geological Surveys. 
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Example I: drill core MAD002  
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Metabasalt (enriched mid-ocean ridge basalt composition "E-
MORB") intruded by adakite (see Spaggiari & Smithies, 2015, 
for lithological and whole-rock geochemical information) 

Hyperspectrally-derived mineralogy exhibits distinct changes in chlorite/biotite and 
amphibole abundances and their composition within metabasalts 

Modelled geochemical indices (coloured by actual values calculated from reported XRF 
results) show trends within basement rock types and across lithological boundaries 

Example II: drill core FOR010 

As with MAD002, geochemical indices map out different basement rock types (top). 
However, Mg# values modelled from hyperspectral data provide more detail, enabling the 
identification of additional intervals of the Bottle Corner Shoshonite (centre, green arrows). 
Phengitic white micas are evident in top part of basement, though compositional change 
suggested by hyperspectral data may be impacted by paleo-weathering (bottom).  

Geochemical indices map out 
different basement rock types 
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Bottle Corner Shoshonite Undawidgi High-K Granite 

Bottle Corner Si-rich Shoshonite Undawidgi Sodic Granite 

Decoration 
Sandstone Undawidgi and Moodini Supersuites 


	What happens when spatially sparse geochemistry meets dense mineralogy? �An example from the Eucla basement and its cover rocks!

