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Geology of the Bungalbin 1:100 000 sheet

by

S. F. Chen and S. Wyche

Abstract
The BUNGALBIN 1:100 000 sheet is situated in the central Southern Cross Granite–Greenstone Terrane of the
Yilgarn Craton. It covers the southeastern part of the Marda–Diemals greenstone belt, the northern part of the
Hunt Range greenstone belt, the southern end of the Mount Manning greenstone belt, and a small part of the
Yerilgee greenstone belt. These greenstone belts are separated by large areas of granitoid rocks of mainly
monzogranitic composition.

On BUNGALBIN the Marda–Diemals greenstone belt consists of a 3 Ga mafic-dominated lower greenstone
succession that is subdivided into three lithostratigraphic associations. The lower association is dominated by
tholeiitic basalt, with subordinate ultramafic rocks in its lower part, and thin units of banded iron-formation and
chert in its upper part. The middle association is composed of a major banded iron-formation and chert unit, up
to 800 m thick, with intercalated lenticular quartzites. The upper association comprises a variety of rock types,
including tholeiitic and high-Mg basalts, a number of banded iron-formation and chert units, and minor siltstone
and shale. The lower greenstone succession is unconformably overlain by a c. 2.73 Ga upper greenstone succession
that consists of felsic volcanic and volcaniclastic sedimentary rocks of the Marda Complex. In other greenstone
belts on BUNGALBIN, only the lower greenstone succession is recognized.

Emplacement of the Butcher Bird Monzogranite was coeval with deposition of the Marda Complex. However,
most granitoid rocks are younger than the greenstones. Granitoid rocks are variably deformed, with high strain
partitioned into the northwesterly trending Mount Dimer Shear Zone and some granite–greenstone contacts.

Three principal deformation events have been recognized on BUNGALBIN. D1 north–south compression produced
low-angle thrust faults, bedding-parallel foliation, and tight to isoclinal folds in the lower greenstone succession.
D2 east–west compression represents a regional folding event that produced macroscopic folds with a weakly
developed axial-planar foliation in greenstones, and a north-trending foliation in high-strain zones within granitoid
rocks. D3 progressive and inhomogeneous, east–west shortening developed the northwest-trending, sinistral
Mount Dimer Shear Zone, and reoriented the F2 Bungalbin Syncline into its current northwest trend. Post-D3

deformation produced northeast- and east-trending fractures and faults, some of which are filled by quartz veins
and Proterozoic mafic dykes. All Archaean greenstones and granitoid rocks have been metamorphosed. The
metamorphic grade is typically low to moderate, with some rocks of middle-amphibolite facies.

Gold has been produced from a number of sites, of which the Mount Dimer gold mine is the most significant.
Iron-ore deposits have been identified in the Bungalbin Hill area.

KEYWORDS: Archaean, granite–greenstone belt, Marda–Diemals, Southern Cross Granite–Greenstone Terrane,
Yilgarn Craton, gold, iron ore.

Introduction

Location and access
The BUNGALBIN* 1:100 000 geological map sheet
(SH 50-12, 2837) lies in the northeastern part of the
JACKSON 1:250 000 sheet (Fig. 1) and is bounded by
latitudes 30°00' and 30°30'S and longitudes 119°30' and
120°00'E. The name of the map sheet is derived from
Bungalbin Hill†, which forms part of the Helena and
Aurora ranges (Fig. 2), rising to 684 m above the
Australian Height Datum (AHD).

Access to BUNGALBIN is provided by the Menzies–
Evanston Road from Kalgoorlie and by the Bullfinch–
Evanston Road from Perth. About 160 km west of
Menzies, these two roads intersect. Following the
Bullfinch–Evanston Road 62 km from the intersection to
the south, the road meets a major track, near the
abandoned Marda Dam, leading to BUNGALBIN. This track
is approximately 102 km north of Bullfinch, 135 km north
of Southern Cross, and 29 km west of the western

* Capitalized names refer to standard 1:100 000 map sheets, unless otherwise
indicated.

† MGA coordinates of localities mentioned in the text are listed in Appendix 1.
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Figure 1. Regional geological setting of BUNGALBIN

boundary of BUNGALBIN. In addition, roads associated with
gold mining activity and iron ore exploration within
BUNGALBIN link the Aurora and Mount Dimer mine sites
(Fig. 2) with Koolyanobbing and the Great Eastern
Highway respectively.

There are no permanent residents in the BUNGALBIN

sheet area, although temporary camps have been
established at the Aurora and Mount Dimer mine sites.
Most of the greenstones within BUNGALBIN are accessible
via tracks and exploration grids, whereas access to
granitoid rocks is generally difficult.

Climate, physiography, and
vegetation
The climate of BUNGALBIN is semi-arid. Average annual
rainfall is similar to the Diemals Homestead (276 mm)*
to the northwest, and Southern Cross (286 mm) to the
south. Rain falls mainly in winter, with occasional major
summer rainfall events due to tropical influences from the

* Climate data for Diemals Homestead and Southern Cross are from the
Commonwealth Bureau of Meteorology website, 2002.
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Figure 2. Principal localities, tracks, and physiographic features on BUNGALBIN

north. During the summer months the climate is hot and
dry, with maximum temperatures generally higher than
30°C between November and March. Winter is cold, with
occasional frosts from June to August.

The physiography of BUNGALBIN is shown in Figure 2.
The most prominent topographic feature is the Helena and
Aurora ranges in the southwest, where a major banded
iron-formation and chert unit forms ridges up to 704 m

above AHD, about 200 m higher than the surrounding
areas. The Hunt Range and Yendilberin Hills in the east
have elevations up to 550 m, corresponding to banded
iron-formation and chert ridges. In other areas, elevations
range from 400 to 500 m.

On BUNGALBIN, small playa lakes near the northern
edge of the sheet area (Fig. 2) form part of the Lake Giles
system. Other major playa lake systems around BUNGALBIN
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include the Hamersley Lakes to the west, and the Lake
Deborah – Lake Seabrook – Lake Walton system to the
south. The present-day drainage on BUNGALBIN is mainly
controlled by the distribution of these playa lake systems.

BUNGALBIN lies entirely within the Coolgardie
Botanical District or Southwestern Interzone of Beard
(1990). The region is characterized by eucalypt wood-
lands and open woodlands dominated by Eucalyptus
salmonophloia, E. salubris, and E. loxophleba, with
patches of Acacia scrub and mallee, and a typical
understorey of saltbush or broombush with sparse
perennial and annual grasses. Vegetation on banded iron-
formation and chert ridges is low (1.5 – 2.5 m), with dense
thickets of Acacia and Casuarina species. Sandplains over
granitoid rocks are dominated by Acacia thickets,
interspersed with small, low woodland patches, with
locally developed hummocky spinifex grass. Detailed
descriptions of the ecosystems on BUNGALBIN are given by
Beard (1979, 1990) and the Biological Surveys Committee
(1985).

Previous and current
investigations
Driven by gold mining activity in the region, Woodward
(1912) and Blatchford and Honman (1917) produced
geological sketch maps with preliminary descriptions that
cover most of the JACKSON and BARLEE 1:250 000 sheets.
On these geological sketch maps, greenstones were
separated from granitoid rocks, but both greenstones and
granitoid rocks were not further subdivided. The geology
and gold production of mining centres between Southern
Cross and Diemals were summarized by Matheson and
Miles (1947). The results of an airborne magnetic and
radiometric survey in 1957 were reported by Spence
(1958). Based on these results, the Bureau of Mineral
Resources (1965) published four maps that covered the
JACKSON 1:250 000 sheet and clearly delineated the
dominant structural trends. The first systematic geological
mapping in the region is represented by the JACKSON

1:250 000 geological map (Chin and Smith, 1983). Based
on this map and newly acquired aeromagnetic data
(Geoscience Australia, 1997, Project 696), an interpreted
geological map was produced by Mackey (1999).

Other relevant studies concerning the central Yilgarn
Craton include Bye (1968), Hallberg et al. (1976), and
Taylor and Hallberg (1977), who investigated the
geochemical and volcanological characteristics of felsic
to intermediate volcanic rocks in the Marda Complex.
Ahmat (1986) described the metamorphic grade variations
in the Southern Cross Granite–Greenstone Terrane.
Griffin (1990) summarized the geology of granite–
greenstones for the whole terrane in a review based on the
published 1:250 000-scale geological maps. Dalstra (1995)
and Dalstra et al. (1998, 1999) conducted a regional
metamorphic, structural, and mineralization study between
Southern Cross and Diemals.

Extensive exploration for gold and iron ore has been
carried out in the region since the 1970s. Company reports,
including unpublished maps and exploration data, are

available through the Western Australia mineral explor-
ation (WAMEX) open-file database system at the
Department of Industry and Resources (formerly
Department of Mineral and Petroleum Resources) in Perth
and at the Kalgoorlie Regional Office of the Geological
Survey of Western Australia (GSWA).

This 1:100 000-scale geological mapping on
BUNGALBIN by the GSWA was undertaken in 1998–99
using 1:25 000-scale colour aerial photographs taken in
October 1997 by the Western Australian Department of
Land Administration (DOLA). Map compilation was
assisted by Landsat Thematic Mapper (TM5) imagery
processed by DOLA, and aeromagnetic images derived
from the newly acquired 400 m line-spaced dataset
(Geoscience Australia, 1997, Project 696). Interpretation
of the bedrock geology was also aided by exploration
drillhole data collected during the course of field mapping.

Precambrian geology

Regional geological setting
BUNGALBIN is in the central part of the Southern Cross
Granite–Greenstone Terrane of the Yilgarn Craton (Fig. 1).
The Archaean Yilgarn Craton is subdivided into the
Narryer and South West Terranes, which are dominated
by granite and granitoid gneiss, and the Murchison,
Southern Cross, and Eastern Goldfields Granite–
Greenstone Terranes (Tyler and Hocking, 2001). These
terranes broadly correspond to the provinces of Gee
et al. (1981) and the superterranes of Myers (1997).
Recent geological and geochronological data suggest that
the Southern Cross Granite–Greenstone Terrane shares
some common aspects of lithostratigraphy, greenstone
geochronology, and tectonic history with the Murchison
Granite–Greenstone Terrane, but has much older
greenstones and deformation events than the Eastern
Goldfields Granite–Greenstone Terrane (Chen et al., in
press; cf. Barley and Groves, 1990; Watkins and Hickman,
1990; Pidgeon and Hallberg, 2000; Greenfield et al.,
2000).

BUNGALBIN covers the southeastern part of the Marda–
Diemals greenstone belt (Figs 3 and 4), which comprises
two greenstone successions. A 3 Ga lower greenstone
succession is characterized by mafic volcanic rocks and
banded iron-formation and has been subdivided into three
lithostratigraphic associations: lower, middle, and upper
(Chen and Wyche, 2001b; Wyche et al., 2001a; Riganti
and Chen, 2002; Chen et al., in press). The lower
association consists mainly of tholeiitic basalt with
subordinate ultramafic rock and high-Mg basalt; the
middle association is characterized by banded iron-
formation and chert; and the upper association contains a
variety of rock types but is dominated by mafic volcanic
rocks (Chen and Wyche, 2001b; Chen et al., in press). The
lower greenstone succession is unconformably overlain by
a 2.73 Ga upper greenstone succession that consists of
felsic to intermediate volcanic rocks (Marda Complex;
Hallberg et al., 1976; Chin and Smith, 1983; Riganti and
Chen, 2002), and clastic sedimentary rocks (Diemals
Formation; Walker and Blight, 1983; Wyche et al., 2001a).
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Figure 4. Simplified geological map of BUNGALBIN

Mafic and ultramafic dykes

Granitoid rock

Butcher Bird Monzogranite

Foliated granitoid rock

Marda Complex
Felsic volcanic and volcaniclastic rock
Sedimentary and volcaniclastic rock

Metabasalt dominant

Amphibolite

Ultramafic rock

Bungalbin

Syncline

Mount Dimer

Shear
Zone

Monzogranite

Clastic sedimentary rock; metamorphosed

10 km

SFC66 17.04.03

Syncline

Anticline

30°30'

12
0°

00
'

30°00'

11
9°

30
'

M
ount Dim

er Shear Zone

Granitoid with some mafic and
ultramafic rocks

Banded iron-formation and chert;
metamorphosed

Mafic and ultramafic rocks interleaved with 
granitoid rock

Structural trend

Mount Dimer Shear Zone

F  fold1

Lo
w

er
 g

re
en

st
on

e 
su

cc
es

si
on

Mount Manning
greenstone belt

Yerilgee
greenstone belt

H
unt R

ange

greenstone belt

Marda–Diem
als

greenstone belt

Marda–Diemals
greenstone belt

Fault, or shear zone

2 3

1

2/3

2/3

2/3

2/3

1

F  fold deformed in D

D  thrust fault1



7

GSWA Explanatory Notes Geology of the Bungalbin 1:100 000 sheet

Along with the Marda–Diemals greenstone belt, parts
of the Hunt Range, Mount Manning, and Yerilgee
greenstone belts (Griffin, 1990; Greenfield, 2001) are also
exposed in the BUNGALBIN sheet area (Fig. 4). The northern
part of the Hunt Range greenstone belt is locally well
exposed and contains rocks that may correlate with the
lower two associations of the lower greenstone succession
in the Marda–Diemals greenstone belt. In this area the
lower association comprises basalt with interleaved
lenticular high-Mg basalt and gabbro, and the middle
association consists of a prominent unit of chert and
banded iron-formation with a discontinuous quartzite at
the base. The southern part of the Hunt Range greenstone
belt is poorly exposed in the Mount Dimer and Yendilberin
Hills areas, where it contains basalt, banded iron-
formation, clastic sedimentary rocks, and subordinate
ultramafic rocks.

Most of the Mount Manning greenstone belt lies on
LAKE GILES (Greenfield, 2001), but its southern end is
exposed in the northern part of BUNGALBIN (Figs 3 and 4).
Here, the possible correlative of the Marda–Diemals
lower association comprises amphibolite and basalt
interleaved with thin units of banded iron-formation,
chert, and gabbro, whereas a prominent ridge-forming
chert and banded iron-formation unit may correlate with
the middle association of the Marda–Diemals greenstone
belt.

The northern part of the Yerilgee greenstone belt
on LAKE GILES consists of banded iron-formation, chert,
high-Mg basalt, ultramafic rock, gabbro, basalt, and clastic
sedimentary rocks. However, the greenstone litho-
stratigraphy has not been established due to poor exposure
and structural complexity (Greenfield, 2001). A small part
of the Yerilgee greenstone belt in the northeastern corner
of BUNGALBIN (Fig. 4) contains rocks that may be
equivalent to the lower and middle associations of the
Marda–Diemals succession. The structurally, and probably
stratigraphically, lowest rocks in the succession are
dominated by mafic rocks, with at least two major units
of ultramafic rocks. Extensive cover of ferruginous duri-
crust in the northeastern corner of the sheet area largely
conceals a suite of rocks containing abundant banded iron-
formation and chert with intercalated mafic intrusive and
extrusive rocks that appear to include substantial amounts
of high-Mg basalt.

Three principal deformation events have been
recognized in the Marda–Diemals and adjacent areas
(Chen et al., 2001; Chen and Wyche, 2001b; Greenfield,
2001; Wyche et al., 2001a,b; Riganti and Chen, 2002;
Chen et al., in press). D1 north–south compression
produced low-angle thrusts, a gently dipping foliation, and
tight to isoclinal folds (Greenfield and Chen, 1999; Chen
and Wyche, 2001b). D2 east–west orogenic compression
produced originally northerly trending macroscopic
upright folds with a weak axial-planar foliation. D3

progressive, inhomogeneous east–west shortening
produced regional-scale, northwest-trending, sinistral
shear zones and northeast-trending dextral shear zones
forming arcuate structures (Chen et al., 2001).

Two styles of metamorphism have been recognized in
the central Yilgarn Craton: early, very low grade meta-
morphism possibly related to sea-floor alteration; and later

low- to medium-grade metamorphism that coincided with
a period of widespread granitoid intrusion (Ahmat, 1986;
Dalstra, 1995; Dalstra et al., 1999).

Archaean rock types
All Archaean rocks on BUNGALBIN have been meta-
morphosed, but primary textures are commonly preserved
and protoliths can be inferred in most cases. For ease of
description, the prefix ‘meta’ may be omitted and protolith
rock names used in the following descriptions.

Lower greenstone succession

Metamorphosed ultramafic rocks (Aup, Aur, Aut,
Au, Auk, Aus)

Ultramafic rocks constitute only a small proportion of
greenstones on BUNGALBIN. Aeromagnetic images show a
major ultramafic unit at the preserved base of the Marda–
Diemals greenstone belt in the southeast (Figs 4 and 5).
It is poorly exposed as peridotite (Aup; MGA 785500E
6622300N), and silica caprock (Rzu) at a number of places
(e.g. MGA 765700E 6627600N; see Cainozoic geology).
Exploration drillhole data reveal that there are also
tremolite–chlorite(–talc) schist (Aur) and talc–chlorite
schist (Aut) within this ultramafic unit. Elsewhere,
scattered outcrops of ultramafic rock (Aup, Aur) are mainly
concentrated in the lower part of the greenstone
stratigraphy.

Undivided metamorphosed ultramafic rocks (Au) are
typically deeply weathered and consist of brown and pale-
green, schistose, chlorite-rich rocks that are commonly
associated with silica caprock (Rzu). A metakomatiite
(Auk) unit, about 100 m thick, is well exposed in the
northeastern limb of the Bungalbin Syncline (MGA
750600E 6651400N and 750200E 6652250N). The
komatiite contains both random and platy olivine-spinifex
textures (Donaldson, 1982), with pseudomorphed olivine
plates up to 5 cm long. The komatiite is intercalated with
and overlain by high-Mg basalts that have typical
pyroxene-spinifex textures. A small outcrop of komatiite
on the western side of the Yerilgee greenstone belt (MGA
788100E 6671900N) is strongly chloritized, but preserves
medium-grained, olivine-spinifex texture.

Small bodies of peridotite (Aup) are typically low in
the greenstone succession, commonly near the granite–
greenstone contacts. Massive to weakly deformed
peridotite may intrude mafic volcanic rocks as there is
commonly no clear association with komatiite. However,
peridotite and silica caprock with relict cumulate textures
are exposed near the komatiite outcrop on the western side
of the Yerilgee greenstone belt. The peridotite is composed
of medium- to coarse-grained olivine with interstitial
pyroxene. The rocks are typically metamorphosed, with
olivine pseudomorphed by serpentine and chlorite. These
rocks commonly contain abundant accessory magnetite.
Although peridotite is typically serpentinized, cumulate
textures may be preserved by fine magnetite outlining
original olivine grains (e.g. MGA 742500E 6634600N).
Analyses of two peridotites are presented in Appendix 2
(GSWA 159442 and 143363).
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Tremolite–chlorite(–talc) schist (Aur) is exposed in
discontinuous lenses in strongly deformed mafic volcanic
rocks adjacent to granite–greenstone contacts, low in the
greenstone lithostratigraphy. The preferred alignment of
fine- to coarse-grained tremolite and chlorite defines a
pervasive foliation. Tremolite–chlorite(–talc) schist (Aur)
and subordinate talc–chlorite schist (Aut) are easily
weathered and fresh material is commonly only in mineral
exploration drillholes in areas such as the Mount Dimer
Shear Zone in southeastern BUNGALBIN. These rocks are
greenish-grey when fresh, and become light brown after
weathering. The majority of tremolite–chlorite(–talc)
schists are probably derived from ultramafic rocks,
although their protoliths cannot be readily identified. Some
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Figure 5. First vertical derivative aeromagnetic image of BUNGALBIN (based on 400m line-spaced data)

tremolite–chlorite(–talc) schist contains minor feldspar
and may have been derived from high-Mg basalt.
Serpentinite (Aus), which is found in mineral exploration
drillholes near the Mount Dimer gold mine, consists
dominantly of serpentine with lesser amounts of talc,
chlorite, and magnetite. No relic igneous textures are
preserved in these rocks.

Metamorphosed fine-grained mafic rocks (Aba,
Abac, Abf, Abm, Abv, Ab, Abg, Abl, Abt)

Fine-grained mafic rocks are widely distributed on
BUNGALBIN. Amphibolite (Aba, Abac) and strongly foliated
basalt (Abf ) lie on or adjacent to granite–greenstone
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monzogranite and mafic rocks are massive to weakly
deformed. Within and adjacent to the southeastern section
of the Mount Dimer Shear Zone (Fig. 4), exploration
drillhole data indicate that basalt, gabbro, and ultramafic
schist are interleaved with granitoid rocks.

Chlorite schist (Abl ) is typically fine, brown,
weathered schist that is not clearly derived from ultramafic
rock. It is commonly identified in mineral exploration
drillholes.

High-Mg basalt (Abm) is readily recognized by the
relict pyroxene-spinifex texture or variolitic texture (or
both). The spinifex (e.g. MGA 750400E 6651400N) is
characterized by randomly oriented tremolite–actinolite
crystals that have replaced acicular clinopyroxene, ranging
in length from a few millimetres up to more than 1 cm,
in a fine-grained groundmass of tremolite, actinolite,
chlorite, and plagioclase. Varioles, ranging from 5 to
15 mm in size, are present locally. The pyroxene-spinifex-
textured high-Mg basalt locally contains prominent pillow
structures (e.g. MGA 741200E 6664800N). Pillows range
from 30 to 100 cm in size and indicate a younging
direction towards the southwest.

The thickness of grey to pale-grey mafic tuff (Abt)
varies from a few metres up to 50 m (e.g. MGA 741500E
6644200N). It is thinly bedded and laminated, with
individual beds ranging from less than 1 mm up to 3 cm
in thickness. Although most mafic tuff outcrops are rubbly,
in situ bedding is preserved locally (e.g. MGA 775800E
6657100N). In thin section the tuffaceous rocks are very
fine grained and consist of cryptocrystalline chlorite,
amphibole, and plagioclase, with minor quartz and opaque
minerals. The well-bedded mafic tuff is commonly
intercalated with massive basaltic flows.

Massive to weakly deformed metabasalt (Abv) is the
dominant mafic rock type in all greenstone belts on
BUNGALBIN. It is typically a grey, fine- to very fine grained
rock consisting of light- to dark-green, commonly
pleochroic amphibole, plagioclase, and minor quartz and
opaque minerals. Secondary epidote and chlorite may also
be present. Primary igneous textures, such as spherical and
elliptical amygdales filled by quartz and chlorite, have
been locally observed. Most metabasalt has probably
undergone low-grade (greenschist-facies) metamorphism.
However, metamorphic grades are higher, locally up to
amphibolite facies, near granite–greenstone contacts. In
these areas the recrystallized basaltic rock is fine to
medium grained, dark grey, and massive to weakly
deformed. Deformation intensity of metabasalt is generally
low, although narrow (1–20 m-thick) high-strain zones are
locally present. Results of five whole-rock analyses of
basalts are presented in Appendix 2 (GSWA 156282,
156283, 156284, 156285, 159466).

Metamorphosed medium- to coarse-grained
mafic rocks (Ao, Aog)

Metamorphosed, medium- to coarse-grained mafic rocks
(Ao, Aog) form a small component of the lower greenstone
succession on BUNGALBIN. Metagabbros typically form sills
and lenses in basaltic rocks (e.g. around MGA 754000E
6626100N and 779600E 6646500N) or are intercalated with

contacts. High-Mg basalt (Abm) is mainly distributed in
the northeastern limb of the Bungalbin Syncline, in the
upper part of the lower greenstone succession, but may
also be quite abundant in the poorly exposed Yerilgee
greenstone belt. Massive to weakly deformed basalt (Abv)
is the dominant component of the lower greenstone
succession. Other fine-grained mafic rocks (Ab, Abg, Abl,
Abt) are preserved locally on BUNGALBIN.

Undivided fine-grained mafic rocks (Ab) are typically
deeply weathered and may be lateritized. They are massive
to weakly deformed and range in colour from yellowish-
brown to dark purplish to reddish-brown, without
distinctive mineralogical or textural features. They are
classified as mafic rocks mainly because of the absence
of primary quartz and their association with fresh basalt
in outcrops and drillholes.

Amphibolite (Aba) on BUNGALBIN is mainly exposed
on the eastern side of the Mount Manning greenstone belt
and the western side of the Yerilgee greenstone belt. In
outcrop amphibolite is typically a very dark grey-green
to black, fine- to medium- grained, strongly recrystallized,
mafic rock. It has a steep pervasive foliation defined by
segregation and alignment of mafic minerals and
plagioclase. A steeply plunging to down-dip mineral
lineation is locally observed on foliation surfaces (e.g.
MGA 757800E 6677800N). In thin section plagioclase is
recrystallized and commonly untwinned, and horn-
blende is olive-green to dark blue-green and strongly
pleochroic. Amphibolite with calc-silicate minerals (Abac)
has been mapped in the northeastern corner of BUNGALBIN,
on the western side of the Yerilgee greenstone belt (MGA
788000E 6670400N). The rock is typically very fine
grained, and characterized by alternating light and dark
bands ranging from 0.2 to 1.5 mm in width. The dark
bands contain light to dark green, strongly pleochroic
amphibole, and the light bands are dominated by fine
diopside. Untwinned plagioclase is abundant in the dark
layers, but rare in the leucocratic layers. Epidote is a
common secondary constituent.

Strongly foliated to amphibolitic basalt (Abf ) is mainly
distributed along the southwestern and southeastern
margins of the Marda–Diemals greenstone belt on
BUNGALBIN (e.g. MGA 752700E 6626600N, and 741400E
6634400N). It is intercalated with lenticular gabbro and
tremolite–chlorite schist, and has a gradational boundary
with massive to weakly deformed basalt away from the
greenstone margins. Recrystallization is typically weak
in foliated basalt, but is relatively strong in more
amphibolitic basalt. A well-developed, steep foliation in
these rocks is parallel to the granite–greenstone contacts,
and may contain a locally preserved, steeply plunging
mineral lineation.

Where mafic rocks and minor granitoid rocks are
irregularly interleaved and cannot be separated at
1:100 000 scale, they are mapped together as Abg (e.g.
basalt and gabbro are patchily intruded by medium- to
coarse-grained monzogranite around MGA 758700E
6676000N). Pyroxene-spinifex-textured high-Mg basalt is
patchily intruded by medium-grained monzogranite in the
eastern part of the Hunt Range greenstone belt (around
MGA 782100E 6644800N). In these cases both the
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banded iron-formation and chert (e.g. around 749500E
6658000N). They are generally conformable with primary
igneous layering or bedding and some may represent
coarser grained intervals in thick mafic extrusive lavas.

Deeply weathered gabbroic rocks (Ao) are typically
massive and purplish to reddish-brown with a relict
igneous texture. They are distinguished from deeply
weathered basalt by a medium to coarse grain size, and
from deeply weathered felsic rocks by the lack of primary
quartz.

Fresh medium- to coarse-grained metagabbros
(mapped as Aog) are most abundant in the lower part of
the lower greenstone succession, and locally intrude
granitoid rocks. Individual gabbro lenses or sills range
from 20 to 150 m in thickness, and are typically
discontinuous along strike. In thin section these rocks
consist of equigranular amphibole (pseudomorphing
clinopyroxene), and intergranular plagioclase. Chlorite,
epidote, quartz, and opaque minerals including magnetite
are accessory minerals.

Metamorphosed felsic volcanic rocks (Af)

On BUNGALBIN volcanic and volcaniclastic rocks are most
abundant in the Marda Complex (Hallberg et al., 1976;
Riganti and Chen, 2002; Chen et al., in press) of the upper
greenstone succession. In the lower greenstone succession,
rare, thin units of typically weathered and deformed
quartz–feldspar-phyric rock may represent felsic volcanic
and volcaniclastic rock (Af ). Although most outcrops are
too small to be shown at map scale, one thin unit is
intercalated with high-Mg basalt on the northeastern limb
of the Bungalbin Syncline (MGA 749000E 6655300N)
where it conforms with regional trends. The rock is pale
grey, and about 3 m thick. Although weathered, it contains
quartz and feldspar phenocrysts up to 3 mm long in a fine-
grained, quartzofeldspathic groundmass. These rocks
could be equivalent to the more widespread, but similarly
weathered, felsic rocks in the lower greenstone succession
on JACKSON (Riganti and Chen, 2002).

Metamorphosed sedimentary rocks (As, Asq,
Ass, Ac, Aci)

Clastic sedimentary rocks (As, Asq, Ass) in the lower
greenstone succession are commonly intercalated with
chert and banded iron-formation (Ac, Aci), but are also
abundant among poorly exposed rocks in the Mount
Dimer Shear Zone. A broad area of undivided metasedi-
mentary rock has also been mapped west of Mount Dimer.

Undivided metasedimentary rock (As) includes shale,
siltstone, fine-grained sandstone, and cherty bands. These
rocks are typically deeply weathered and poorly exposed.
Their sedimentary protolith identification is based on the
presence of bedding and the intercalation with chert and
banded iron-formation. Quartz grains (1–2 mm in size) are
visible in hand specimens of coarser grained sedimentary
rocks. Weathered metasedimentary rocks may contain a
bedding-parallel foliation (e.g. MGA 747700E 6641600N).
These rocks are relatively abundant in the poorly exposed
Mount Dimer Shear Zone (Fig. 4), where they are

typically strongly foliated (e.g. MGA 745500E 6665500N).
An extensive area of very deeply weathered or altered
rocks at the southern end of Hunt Range, west of Mount
Dimer, is classified as undivided metasedimentary rock.
However, extreme alteration in this area makes it difficult
to determine the protolith. Although there are outcrops of
deeply weathered shale (e.g. MGA 776300E 6638600N
and MGA 777200E 6640300N) and chert (pyritic at MGA
778800E 6638200N), most outcrops consist of very fine
grained, bleached saprolite. Well-rounded quartz granules
in some saprolite (e.g. MGA 778300E 6638400N) could
be interpreted as amygdales. If this is the case, the unit
may include extremely weathered, probably mafic,
volcanic rock. Much of the area is covered by abundant
scree of vein quartz, giving it a light colour on aerial
photos, and a very high reflectance on Landsat images.

Metamorphosed quartz-rich sedimentary rock consist-
ing mainly of quartzite (Asq) is white to pale grey and
composed predominantly of quartz (>95%), with
accessory chlorite, biotite, amphibole, and magnetite. The
quartzite is very fine to coarse-grained with fine bedding
(down to <1 mm scale) defined by variations in grain size,
with thicker beds (up to 20 cm) that locally preserve cross-
bedding. It is associated with a major unit of chert and
banded iron-formation in the middle association of the
lower greenstone succession. In the northern Hunt Range
greenstone belt, a quartzite unit (20–30 m thick) is
exposed on both limbs of a south-plunging syncline.
Although bedding on both limbs dips steeply to the west,
cross-bedding in the quartzite indicates younging to the
west on the eastern limb (e.g. MGA 775800E 6653300N),
and to the east on the western limb (e.g. MGA 775200E
6651800N). In the Helena and Aurora ranges, quartzite
lenses (1–10 m thick) in a major chert and banded iron-
formation unit have not been mapped separately, due to
their thinness and discontinuity along strike. Cross-
bedding in the quartzites (e.g. MGA 757300E 6639300N)
indicates a consistent younging direction towards the core
of the Bungalbin Syncline.

Metamorphosed sandstone and siltstone (Ass) of the
lower greenstone succession are exposed in the Mount
Dimer Shear Zone. Fine- to medium-grained quartzo-
feldspathic sandstone is intercalated with minor siltstone,
shale and, locally, quartzite. Foliation is typically
subparallel to bedding and has not transposed it. Although
foliated and weathered, primary structures such as graded
bedding (e.g. MGA 746600E 6663400N) are better
preserved in the sandstone and siltstone unit (Ass) than
in the deeply weathered clastic sedimentary rocks (As).

Banded chert (Ac) and banded iron-formation (Aci) are
widely distributed in all greenstone belts on BUNGALBIN.
They are particularly abundant in the middle and upper
parts of the lower greenstone succession, and form
prominent ridges in the Helena and Aurora ranges, Hunt
Range, and Yendilberin Hills. There is considerable
variation in the iron-oxide content of these rocks, and the
terms ‘banded chert’ and ‘banded iron-formation’
represent end members of a spectrum of compositions.

Both banded chert (Ac) and banded iron-formation
(Aci) are typically laminated and thinly bedded at
millimetre to centimetre scales. Locally preserved ripple
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marks in chert and banded iron-formation suggest a
shallow-water depositional environment (cf. Riganti and
Chen, 2002). Metamorphosed banded chert (Ac) consists
of microcrystalline to recrystallized, fine-grained quartz,
and minor iron oxides that form grey, white, and brown
bands. Ferruginous chert with a dark-brown to black
colour represents the deeply weathered version of banded
chert. Banded iron-formation (Aci) consists of blue or
steel-grey to black magnetite–hematite-rich bands, and red
jaspilite bands. Cemented scree on slopes of prominent
chert and banded iron-formation ridges contains angular
and poorly sorted clasts in a siliceous matrix, and has not
been mapped separately.

Upper greenstone succession

In the Marda–Diemals greenstone belt (Fig. 3), the upper
greenstone succession comprises the Marda Complex
(mainly on JACKSON; Riganti and Chen, 2000) and the
Diemals Formation (mainly on JOHNSTON RANGE; Wyche
et al., 2000). The eastern part of the Marda Complex is
exposed on BUNGALBIN (Fig. 4).

Marda Complex (AfM, AfMr, AfMs, AfMsc, AfMss)

The Marda Complex (Hallberg et al., 1976; Chin and Smith,
1983), with the associated Butcher Bird Monzogranite,
occupies a roughly elliptical area of about 600 km2 (Fig. 3)
on JACKSON (Riganti and Chen, 2000), JOHNSTON RANGE

(Wyche et al., 2000), and BUNGALBIN (Chen and Wyche,
2001a). The complex, which is unconformable on the lower
greenstone succession, comprises andesitic and rhyolitic
lava flows and pyroclastic rocks in the upper part, and clastic
and volcaniclastic sedimentary rocks in the lower part
(Riganti et al., 2000; Wyche et al., 2001b; Riganti and Chen,
2002; Chen et al., in press).

On BUNGALBIN the Marda Complex is exposed in the
core of the Bungalbin Syncline and intruded by the
Butcher Bird Monzogranite (Fig. 4). Undivided felsic
volcanic and volcaniclastic rocks of the Marda Complex
(AfM) are typically deeply weathered and partly altered
to silcrete or kaolinite. They are white or yellowish-white,
fine grained, and generally massive with common primary
quartz (1–3 mm long) in a fine-grained groundmass. Felsic
volcanic fragments up to 3 cm in size are preserved locally
(e.g. MGA 752540E 6644350N).

Relatively fresh felsic volcanic rocks in the Marda
Complex (AfMr) include rhyolitic lava flows and
ignimbrite that are massive to weakly foliated. The
rhyolitic lava flows are grey to pale grey, and fine grained
to porphyritic, with a local flow banding. Quartz- and
plagioclase-phyric rhyolite flows contain phenocrysts up
to 5 mm long in an aphyric to fine-grained groundmass.
Glass is typically devitrified (e.g. MGA 748700E
6648900N). Unfilled vesicles up to 7 mm long are locally
abundant in rhyolitic lava flows (e.g. MGA 752000E
6644900N). Rhyolitic ignimbrite is characterized by
welding and rheomorphic flow (e.g. MGA 746300E
6648300N) that indicate subaerial deposition (Hallberg
et al., 1976; Riganti et al., 2000). A chemical analysis of
rhyolite is given in Appendix 2 (GSWA 159440). Andesitic
rocks of the Marda Complex are most abundant on

JACKSON (Riganti and Chen, 2000). On BUNGALBIN minor
andesite with amygdales (3–5 mm long) filled by quartz
is intercalated with rhyolite and has not been mapped
separately.

Weathered and poorly exposed clastic sedimentary
rocks in the Marda Complex (AfMs) are dominated by
siltstone, with subordinate shale, sandstone, and pebbly
sandstone in which pebbles, 2–3 cm in size, are composed
of chert, banded iron-formation, and vein quartz. They are
assigned to the Marda Complex because, although poorly
exposed on BUNGALBIN, they are locally intercalated with
felsic volcanic components of the Marda Complex on
JACKSON (Riganti and Chen, 2002). Primary textures (e.g.
bedding) in these rocks are generally preserved, despite
weathering and a weakly to moderately developed
foliation.

Polymictic conglomerate and pebbly sandstone
intercalated with minor sandstone and siltstone in the
Marda Complex (AfMsc) are typically deeply weathered
and poorly exposed. Small outcrops of these rocks are
scattered in uncemented chert, banded iron-formation, and
lateritic gravels on hill tops and slopes. The conglomerate
is typically massive and poorly bedded, whereas the
intercalated sandstone and siltstone are generally well
bedded, with steep to subvertical bedding (e.g. MGA
741500E 6647800N). Angular to rounded clasts in the
conglomerate and pebbly sandstone, up to 30 cm
(typically 2–10 cm) in size, are in a silicified or
ferruginous lithic and sandy matrix. Although chert and
banded iron-formation clasts are the most abundant, there
are felsic volcanic (e.g. MGA 752500E 6645100N),
granitic (e.g. MGA 749200E 6651700N), and basaltic
clasts (e.g. MGA 748900E 6646800N) in places.

Sandstone with subordinate siltstone and pelite in the
Marda Complex (AfMss) are massive to well bedded.
Cross-bedding (e.g. MGA 753400E 6647200N) and graded
bedding in fine- to medium-grained quartzofeldspathic
sandstone indicate a southwestward-younging direction.
Siltstone and pelite are typically ferruginous and have
been partly altered to laterite.

Granitoid rocks (Ag, Agf, Agm, Agmf,
Agbb, Agb, Agg, Ags)

Granitoid rocks occupy about 50% of the BUNGALBIN sheet
area (Fig. 4) but are, for the most part, poorly exposed.
They are dominated by monzogranite and are mainly
between greenstone belts, with a small proportion (e.g. the
Butcher Bird Monzogranite) within greenstones. The
granite–greenstone contacts are either sheared or intrusive,
or both.

Undivided granitoid rocks (Ag) include deeply
weathered rocks, and inaccessible granite exposures
interpreted from aerial photos and Landsat images. Near
the southern boundary of BUNGALBIN, widespread,
weathered granitoid rocks are white or reddish-white and
locally contain less weathered monzogranite. They are
medium to coarse grained, and massive to weakly foliated,
and typically show a relic granular texture. In some
outcrops feldspar is completely weathered and only quartz
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remains. Weathered granitoid rocks are commonly capped
by silcrete. Strongly foliated, weathered granitoid rocks
(Agf ) are mapped separately (e.g. MGA 764300E
6625300N and MGA 748100E 6664600N).

Monzogranite (Agm) and its strongly foliated equiva-
lent (Agmf ) are the most common granitoid rocks on
BUNGALBIN. Monzogranite (Agm) is typically massive to
weakly deformed, fine to coarse grained, and equigranular
to sparsely porphyritic. It is mainly composed of
microcline, albitic plagioclase, and quartz, with minor
biotite. Microcline phenocrysts are up to 15 mm across,
and plagioclase is commonly zoned and sericitized.
Biotite, which comprises up to 8% (but is typically less
than 5%) of the rock, is the major mafic constituent. Minor
hornblende is present locally. Chlorite is a common
secondary mineral after biotite, and accessory minerals
include opaque oxides (mainly magnetite), apatite, titanite,
and zircon.

Well-exposed monzogranite, adjacent to the eastern
margin of the northern Hunt Range greenstone belt, is
medium to coarse grained, and contains a local foliation
that trends north-northwest and dips steeply to the west
towards the greenstones. The monzogranite and its contact
with greenstones are cut by a set of northeast-trending
faults filled by quartz veins. Along the granite–greenstone
contact, monzogranite locally contains pegmatite dykes
and xenoliths of mafic rocks. The pegmatite dykes are
generally parallel to the contact and contain K-feldspar
megacrysts up to 10 cm across (e.g. MGA 774000E
6665900N). A sensitive high-resolution ion microprobe
(SHRIMP) U–Pb zircon date of 2723 ± 3 Ma has been
obtained from recrystallized biotite monzogranite at
Kurrajong Rockhole (Nelson, 2002). A geochemical
analysis of this sample (GSWA 159422) is presented in
Appendix 2.

The Butcher Bird Monzogranite (Agbb) is a massive,
medium- to coarse-grained, plagioclase-phyric grano-
phyre. It outcrops near the central-western edge of
BUNGALBIN (Fig. 4), and extends westwards onto JACKSON

(Riganti and Chen, 2000). Petrographically, it is
distinguished by prominent plagioclase and, less
commonly, K-feldspar megacrysts up to 6 mm long that
are commonly sericitized and clouded (Riganti and Chen,
2002). Subordinate quartz phenocrysts are typically
resorbed. The Butcher Bird Monzogranite has yielded a
SHRIMP U–Pb zircon age of 2730 ± 4 Ma (Nelson, 2001;
Riganti and Chen, 2002). The ubiquitous granophyric
texture of the monzogranite and the resorbed quartz grains
indicate that it represents a high-level intrusion. Its
chemical and age similarity to the Marda Complex
rhyolite suggests that the monzogranite is coeval with the
felsic volcanism (Hallberg et al., 1976; Riganti et al.,
2000; Chen et al., in press).

Strongly foliated monzogranite (Agmf ) is exposed in
the Mount Dimer Shear Zone (e.g. MGA 745000E
6671500N), and in areas adjacent to granite–greenstone
contacts (e.g. MGA 773700E 6655200N). It is similar to
the massive and weakly deformed monzogranite (Agm),
but contains a pervasive foliation. Within the Mount Dimer
Shear Zone, an early, northerly trending foliation is
defined by flattened feldspar and quartz grains. The early

foliation is subparallel to a locally developed gneissic
banding, and both the early foliation and the gneissic
banding are sinistrally displaced by a later, northwest-
trending foliation that is defined mainly by preferred
alignment of biotite. Some feldspar megacrysts contain
brittle fractures perpendicular to the early foliation.

Where granitoid rocks and irregularly interleaved
mafic rocks cannot be separated at 1:100 000 scale, they
are mapped together as Agb. In the northwestern section
of the Mount Dimer Shear Zone (e.g. around MGA
747600E 6666600N), strongly foliated to mylonitic
monzogranite is interleaved with basaltic and minor pelitic
schists, with a pervasive, northwest-trending, steep
foliation. In the northern part of the Hunt Range
greenstone belt, medium- to coarse-grained massive
monzogranite and pegmatite dykes are interleaved with
fine-grained, dark-grey to greenish-grey (epidotized)
basalt, and minor medium-grained gabbro that are
preserved as irregular patches in the monzogranite.

A small pluton of medium-grained, dark-grey
granodiorite (Agg) outcrops at the southern end of
the Mount Manning greenstone belt (MGA 754400E
6675400N). A weak vertical foliation is defined by
preferred alignment of mafic minerals and trends 325°,
parallel to the granite–greenstone contact. Biotite and
minor hornblende comprise up to 10% of the granodiorite.
A small body of pink syenite (Ags) has intruded strongly
foliated granite (Agf ) in the Mount Dimer Shear Zone
(around MGA 748200E 6664800N). The syenite is
moderately foliated and contains medium- to coarse-
grained K-feldspar phenocrysts (up to 6 mm long) in a
fine-grained quartzofeldspathic groundmass, with minor
biotite and opaque minerals.

Veins and dykes (q, g)
Most quartz veins (q) on BUNGALBIN trend east and
northeast. The most prominent northeast-trending quartz
veins are exposed adjacent to the eastern margin of the
northern Hunt Range greenstone belt, where massive
quartz veins are 3–10 m wide, and form low ridges above
granitoid rocks and greenstones (e.g. MGA 775400E
6662100N). Greenstones in the northeastern corner of the
sheet area contain both northeast- and east-trending quartz
veins.

Granitoid dykes (g) of mainly monzogranitic compos-
ition within greenstones are common near the eastern
granite–greenstone contact in the Hunt Range greenstone
belt (e.g. MGA 773700E 6667000N). They are up to 30 m
wide and trend north-northwest, parallel to the contact.

Mafic dykes (#dy)
A number of prominent east- and northeast-trending
magnetic lineaments that crosscut greenstones and
granitoid rocks on BUNGALBIN (Figs 4 and 5) are
interpreted as fractures or faults filled by mafic and
ultramafic dykes (#dy), which represent the latest
Precambrian features in the region. The dykes are all
concealed on BUNGALBIN, but are readily identified as
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pronounced linear anomalies on aeromagnetic images.
Similar magnetic anomalies in the areas to the north (e.g.
on EVERETT CREEK; Riganti, 2002) correspond to out-
cropping mafic dykes. Hallberg (1987) reviewed available
data on mafic and ultramafic dykes, and suggested that the
dykes were probably emplaced between 2.4 and 2.0 Ga
in the central Yilgarn Craton, post-dating cratonization.

Lithostratigraphy of the Marda–
Diemals greenstone belt
Only small parts of the Mount Manning and Yerilgee
greenstone belts are preserved on BUNGALBIN. The
lithostratigraphy of these belts, and of the northern
Hunt Range greenstone belt, has not been confidently
established, and is briefly described in Regional
geological setting. The following section deals with the
lithostratigraphy of the Marda–Diemals greenstone belt on
BUNGALBIN.

Lower greenstone succession

The lithostratigraphy of the lower greenstone succession
on BUNGALBIN is constrained by the well-defined
Bungalbin Syncline (Fig. 6). Like the JOHNSTON RANGE and
JACKSON sheets (Wyche et al., 2001a; Riganti and Chen,
2002), the lower greenstone succession on BUNGALBIN

consists of three lithostratigraphic associations: lower,
middle, and upper (Fig. 7; Chen et al., in press).

Weathered ultramafic rocks at the base of the lower
association are marked by a poorly exposed silica caprock
unit that corresponds to a strong magnetic anomaly on
aeromagnetic images (Fig. 5). Near the base of the
succession, greenstones are extensively intruded by
granitoid rocks that are now deeply weathered. The lower
association is dominated by tholeiitic basalt (Fig. 7), with
subordinate tremolite–chlorite(–talc) schist, peridotite, and
gabbro in the lower part, and thin units of banded iron-
formation and chert in the upper part.

The middle association consists of a major banded
iron-formation and chert unit, up to 800 m thick, that is
locally duplicated by reverse faulting (Fig. 6). It forms
prominent ridges in the Helena and Aurora ranges, which
rise up to 200 m above the surrounding areas. The lower
(southern) part of the association is dominated by banded
iron-formation, whereas the upper (northern) part is
dominated by chert with intercalated quartzite lenses. The
steep bedding of the finely laminated banded iron-
formation and chert dips mainly to the north and
northwest. Cross-bedding in the quartzites indicates a
consistent younging direction towards the core of the
Bungalbin Syncline (Fig. 6).

The upper association, which contains six lithological
units, is truncated by a D1 thrust fault (Figs 6 and 7). The
association is best preserved in a large-scale F1 anticline
within the northeastern limb of the Bungalbin Syncline.
The lithological units are:
• tholeiitic basalt with thin units of banded iron-

formation, which is poorly exposed in the lower part
of the association, below the D1 thrust fault;

• clastic sedimentary rocks dominated by shale and
siltstone in the core of the F1 anticline that are
intercalated with and overlain by banded iron-
formation and chert units;

• tholeiitic basalt and minor gabbro intercalated with
banded iron-formation and mafic tuff;

• pyroxene-spinifex-textured high-Mg basalt with
banded iron-formation intercalations;
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• tholeiitic basalt with thin units of banded iron-
formation and chert;

• high-Mg basalt with pyroxene-spinifex texture and
pillow-lava structures at the top.

The age of the lower greenstone succession in the
Marda–Diemals greenstone belt is poorly constrained.
Fletcher et al. (1984) used Sm–Nd model ages to constrain
the age of basalt from the Diemals area on JOHNSTON

RANGE to 3050 ± 100 Ma. A large body of rhyolitic
porphyry at Deception Hill (Fig. 3) within the lower
greenstone succession has yielded a SHRIMP U–Pb zircon
age of 3023 ± 10 Ma (Nelson, 1999; Wyche et al., 2001a).
However, the relationship between this porphyry and
adjacent greenstones is concealed, and it is not clear
whether it forms part of the succession or represents a later
high-level intrusion. It is also possible that the zircons in
the porphyry are xenocrysts and that the body is younger
than c. 3023 Ma.

The 3 Ga lower greenstone succession in the Marda–
Diemals area can be broadly correlated with those in other
parts of the Southern Cross Granite–Greenstone Terrane,
based on limited geochronological data. For example,
Nelson (1995) obtained a SHRIMP U–Pb zircon age of
2958 ± 4 Ma for supracrustal rocks from the Ravensthorpe
greenstone belt. In the Lake Johnston greenstone belt, the
felsic to intermediate rocks associated with komatiite have
given SHRIMP U–Pb zircon ages of 2921 ± 4 and
2903 ± 5 Ma (Wang et al., 1996).

Upper greenstone succession

The upper greenstone succession in the Marda–Diemals
greenstone belt consists of felsic to intermediate volcanic
and volcaniclastic (Marda Complex) and clastic sedi-
mentary rocks (Diemals Formation) that unconformably
overlie the lower greenstone succession (Fig. 3: Chen et al.,
in press). The Marda Complex (Fig. 8) lies predominantly
on JACKSON (Riganti and Chen, 2000, 2002), with a small
portion preserved in the western part of BUNGALBIN. The
Diemals Formation is absent on BUNGALBIN.

The lower part of the Marda Complex consists of
polymictic conglomerate, sandstone, and siltstone that
locally interfinger with thin rhyolitic and andesitic units
(Fig. 9; Riganti and Chen, 2002; Chen et al., in press). The
compositions of conglomerate clasts are similar to
adjacent rock types in the lower greenstone succession,
with chert and banded iron-formation clasts the most
abundant. Locally prominent felsic volcanic clasts are
probably derived from contemporaneous felsic volcanic
deposits within the complex (Chin and Smith, 1983). The
clastic composition and immaturity of the sedimentary
rocks suggest proximal deposition (Riganti and Chen,
2002; Chen et al., in press).

The sedimentary rocks in the Marda Complex
are conformably overlain by andesite, rhyolite, and
subordinate dacite that show a distinct calc-alkaline trend
on an AFM plot (Figs 9 and 10; Riganti and Chen, 2002;
Chen et al., in press). Dark-grey andesite flows are
typically porphyritic and commonly amygdaloidal, and
mainly outcrop on JACKSON (Riganti and Chen, 2000,
2002). Rhyolitic ignimbrite and rhyolite flows overlie the
andesite and sedimentary rocks (Fig. 9). The rhyolitic
rocks preserve evidence of welding and rheomorphic flow
that indicate subaerial deposition (Hallberg et al., 1976;
Riganti et al., 2000). Two samples taken from rhyolitic
ignimbrite on JACKSON yielded SHRIMP U–Pb zircon ages
of 2734 ± 3 and 2732 ± 3 Ma respectively (Nelson, 2001;
Riganti and Chen, 2002).

Structural geology
The deformation history of the Southern Cross Granite–
Greenstone Terrane has been described by Griffin (1990),
Bloem et al. (1997), Dalstra et al. (1999), Greenfield and
Chen (1999), and Chen et al. (2001, in press). Many
authors envisage a north–south compressional regime
followed by an east–west compressional regime, although
the structural schemes differ in detail. For example,
Dalstra et al. (1999) recognized five deformation events
between Southern Cross and Diemals:
• north–south D1 compression produced regional

detachment and localized recumbent folds;
• east–west D2 compression resulted in regional-scale

upright to inclined folds;
• further east–west compression during D3 and D4

produced regional-scale ductile shear zones and
conjugate ductile–brittle faults respectively;

• relaxation and north–south compression (D5) resulted
in localized brittle reactivation and thrusting (Dalstra,
1995; Dalstra et al., 1999).

Figure 7. Lithostratigraphic column of the lower
greenstone succession on BUNGALBIN
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The previous work and overprinting relationships,
deformation styles, and structural orientations have led to
the recognition of three principal deformation events in
the Marda–Diemals and adjacent areas during recent
geological mapping: D1, D2, and D3 (Table 1; Chen and
Wyche, 2001a; Greenfield, 2001; Wyche et al., 2001a;
Riganti and Chen, 2002; Chen et al., in press).

First deformation event (D1)

Although D1 structures have been widely observed in the
central Southern Cross Granite–Greenstone Terrane
(Greenfield and Chen, 1999; Chen et al., in press),
evidence for D1 north–south compression is limited on
BUNGALBIN. Figure 6 shows a large-scale D1 thrust with
associated foliation that is generally subparallel to the
bedding of shale, siltstone, banded iron-formation, and
chert, but locally truncates the axial trace of a large-scale
F1 anticline. The thrust fault extends to the west across
the central part of JACKSON (Riganti and Chen, 2000), and
is folded around the hinge of the Bungalbin Syncline. The
syncline is interpreted as an F2 fold that has been
reoriented during D3 (Chen et al., 2001; Chen et al., in
press). An interpreted D1 thrust (around MGA 755200E
6637000N) in the Helena and Aurora ranges resulted in
stratigraphic duplication of the ridge-forming chert and
banded iron-formation unit in the hinge zone of the
Bungalbin Syncline (Fig. 6). A large-scale F1 anticline on
the northeastern limb of the Bungalbin Syncline plunges
moderately (30° at MGA 748900E 6657800N) to the
northwest. Small-scale F1 tight to isoclinal folds with
gently to moderately plunging hinges (e.g. MGA 750400E
6645800N and 759400E 6638300N) are preserved in the
hinge zone of, and are overprinted by, the Bungalbin
Syncline.

The age of the first deformation event is not well
constrained in the central Southern Cross Granite–
Greenstone Terrane. However, it post-dated deposition of
the lower greenstone succession, as D1 has clearly affected
the middle and upper associations. Lack of D1 structures
in the upper greenstone succession suggests that D1

deformation ended before c. 2.73 Ga, which is the age of
the upper succession.

Second deformation event (D2)

D2 east–west compression produced macroscopic upright
folds with a weak axial-planar foliation in green-
stones, and a northerly trending gneissic banding and
foliation in granitoid rocks (Chen et al., in press). The
most conspicuous D2 structure is the Bungalbin Syncline,
which has a wavelength of 35 km and straddles the
BUNGALBIN and JACKSON sheets. This fold was shown as a
syncline by Griffin (1990) and as an anticline by Myers
and Swager (1997). The recent mapping confirms it to be
a synclinal structure because: (1) field observations and
magnetic patterns indicate that the bedding of banded iron-
formation and chert units in the hinge zone dips mainly
to the northwest towards the core of the fold; (2) cross-
bedding in lenticular quartzites and pillow-lava structures
in tholeiitic and high-Mg basalts indicate a consistent
younging direction towards the core of the fold.

In the northern Hunt Range greenstone belt, a large-
scale, north-trending F2 syncline (Fig. 4) is outlined by a
major chert and banded iron-formation unit that is
underlain by quartzite and mafic rocks. Bedding on both
limbs dips steeply to the west, but cross-bedding in the
quartzite indicates younging towards the core of the
syncline. A steep to vertical S2 foliation is weakly

Figure 9. Lithostratigraphic column of the Marda
Complex (after Riganti and Chen, 2002)

Tholeiitic

Calc-alkaline

Na O+K O2 2 MgO

FeOt

SFC69 26.03.03

Figure 10. AFM plot indicating the calc-alkaline affinity of the
Marda Complex volcanic rocks (after Riganti and
Chen, 2002). Filled diamonds are GSWA data, and
unfilled diamonds are data from Hallberg et al.
(1976). The calc-alkaline–tholeiitic discriminant line
is from Irvine and Baragar (1971)
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Table 1. Geological evolution of BUNGALBIN and adjacent areas

Age Deformation Geology
event

3.0 Ga Deposition of lower greenstone succession

D1 North–south compression: low-angle thrusts, layer-parallel foliation, and tight to
isoclinal folds in lower greenstone succession

2.73 Ga Deposition of Marda Complex felsic to intermediate volcanic rocks
Intrusion of Butcher Bird Monzogranite

D2 Early D2 east–west compression: upright to inclined folds (e.g. Bungalbin Syncline),
and axial-planar foliation
Late D2 east–west compression: deposition and deformation of Diemals Formation
clastic sedimentary rocks

2.72 Ga – 2.68 Ga Intrusion and deformation of granitoid rocks
Peak metamorphism

2.68 Ga – 2.65 Ga D3 Progressive and inhomogeneous east–west shortening: northeast-trending dextral and
northwest-trending sinistral shear zones, and arcuate structures

Post-D3 Northeast- and east-trending brittle faults
Intrusion of mafic and ultramafic dykes

developed in the Hunt Range greenstone belt. The foliation
trends north to north-northwest, subparallel to the axial
trace of the F2 syncline.

In granitoid rocks the most intense D2 deformation is
in regional-scale shear zones or at granite–greenstone
contacts (Chen et al., in press). In strongly foliated to
gneissic monzogranite within the Mount Dimer Shear
Zone (e.g. around MGA 747600E 6666600N and 744800E
6671400N), a northerly trending, steep S2 foliation is
sinistrally truncated by a northwest-trending S3 foliation.
In strongly foliated monzogranite adjacent to the western
boundary of the Hunt Range greenstone belt (MGA
773700E 6655200N), a north-trending S2 foliation defined
by the preferred alignment of feldspar and biotite is
subvertical or dips steeply to the east. However,
monzogranite adjacent to the eastern margin of the Hunt
Range greenstone belt is less deformed.

In the central Southern Cross Granite–Greenstone
Terrane, the age of D2 is constrained by the maximum
depositional age (2729 ± 9 Ma) of the syn-D2 Diemals
Formation obtained from JOHNSTON RANGE (Nelson, 2001;
Wyche et al., 2001a; Chen et al., in press). However,
D2-style deformation may have continued episodically
until c. 2680 Ma, coinciding with the major period of
granitoid intrusion. Some granitoid plutons contain a
northerly trending S2 foliation (Chen et al., 2001).

Third deformation event (D3)

D3 was a progressive, inhomogeneous east–west shorten-
ing event characterized by the development of regional-
scale northwest-trending sinistral shear zones and
northeast-trending dextral shear zones that are linked by
north-trending contractional zones, forming large arcuate
structures (Chen et al., 2001). The arcuate structures were
generated by the impingement of competent granitoid

blocks into less competent greenstone belts during
horizontal shortening (D3). As a result of granitoid
impingement, earlier (F2) folds were reoriented parallel to
the strike-slip shear zones (Chen et al., 2001). According
to this model, the northwest-trending Bungalbin Syncline
is interpreted as an F2 fold reoriented during D3. Both the
syncline and Mount Dimer Shear Zone form the south-
eastern arm of the Evanston – Mount Dimer arcuate
structure (Fig. 3; Chen et al., 2001).

On BUNGALBIN the most prominent D3 structure is
the Mount Dimer Shear Zone, a northwest-trending,
regional-scale ductile shear zone, up to 5 km wide. The
northwestern section of the shear zone truncates the
northeastern limb of the Bungalbin Syncline and
juxtaposes it against foliated to gneissic monzogranite.
Adjacent to the granite–greenstone contact, granitoid rocks
are moderately to strongly foliated and interleaved with
mafic and pelitic schists (e.g. MGA 748000E 6664400N
and 747300E 6666500N). A steep foliation in granitoid
rocks, with a gently plunging mineral lineation (Fig. 11),
dips consistently to the northeast, away from the
greenstones. The shear zone is centred 1.5 – 2 km in the
granitoid rocks, where it is defined by granitic mylonite.
The S–C fabrics are well developed in the shear zone
centre, where a northerly trending S-plane, defined by the
alignment of feldspar, quartz, and biotite, is sinistrally
displaced by a northwest-trending C-plane (Fig. 12).
Asymmetric porphyroclasts of feldspar (Fig. 12) and
small-scale discrete shear zones also indicate a sinistral
shear sense.

The Mount Dimer Shear Zone extends to the south-
eastern part of BUNGALBIN, where it is poorly exposed but
clearly truncates the Hunt Range greenstone belt on
aeromagnetic images (Fig. 5). Exploration drillhole data
reveal a 2–3 km-wide high-strain zone in which ultramafic
and mafic rocks are commonly foliated. Mesoscopic
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Figure 11. Gently (5°) plunging mineral lineation in strongly foliated monzogranite within the Mount Dimer Shear
Zone (MGA 744700E 6671500N)

Figure 12. S–C fabrics in strongly foliated monzogranite (MGA 747600E 6666700N), showing sinistral shear sense
in the Mount Dimer Shear Zone. Asymmetric feldspar porphyroclasts also indicate sinistral shear sense
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S-shaped asymmetric folds in a major chert and banded
iron-formation unit (e.g. MGA 783000E 6632400N) and
the drag pattern of the Hunt Range greenstone belt indicate
a sinistral movement on the shear zone.

Impingement of rigid granitoids into greenstone belts
during D3 has resulted in the lateral escape of greenstone
belts (Chen et al., 2001). Adjacent to the southeastern
margin of the Marda–Diemals greenstone belt (e.g. MGA
765300E 6627600N), a subvertical to steeply northwesterly
dipping foliation in both greenstones and granitoid rocks
contains a moderately to steeply plunging mineral
lineation. Development of this foliation is attributed to the
southeastward escape of the Marda–Diemals greenstone
belt during D3.

In the central Southern Cross Granite–Greenstone
Terrane, strongly foliated monzogranite in the Evanston
Shear Zone on LAKE GILES (Greenfield, 2001) has yielded
a SHRIMP U–Pb zircon date of 2654 ± 6 Ma (Nelson,
2001). This date is within error of the 2656 ± 3 Ma date
obtained by Qiu et al. (1999) for an undeformed porphyr-
itic granitoid intruding the Koolyanobbing Shear Zone
near Koolyanobbing, about 40 km south of BUNGALBIN.
If strike-slip deformation along the Evanston and
Koolyanobbing Shear Zones represents the same event
(D3), then the minimum age for D3 is c. 2655 Ma.

Post-D3 deformation

Post-D3 structures on BUNGALBIN include widespread
northeast- and east-trending brittle faults or fractures.
Some northeast-trending faults are filled by quartz veins
(e.g. MGA 775400E 6662200N), whereas most east-
trending faults are probably filled by Proterozoic mafic
dykes. These later structures crosscut all the earlier
structures, but the timing of deformation is uncertain.

Metamorphism
Binns et al. (1976) published the first regional meta-
morphic study of the eastern part of the Yilgarn Craton.
Ahmat (1986) carried out a more detailed petrographic
study of metamorphic assemblages in the Southern Cross
Granite–Greenstone Terrane, and refined the map of
Binns et al. (1976). A structural and metamorphic
study that included the Marda–Diemals region (Dalstra,
1995; Dalstra et al., 1999) included a petrographic study
and detailed pressure–temperature determinations on
amphibole–plagioclase pairs in metamorphosed tholeiitic
mafic rocks from a number of localities west and northwest
of BUNGALBIN, and on JACKSON and JOHNSTON RANGE. This
study proposed a two-stage metamorphic history.

The first metamorphic episode is best preserved in
prehnite–pumpellyite facies rocks, mainly in and
around the Marda Complex. Here, much of the primary
mineralogy, including igneous clinopyroxene, is retained.
The generally very low strain and spilitization of these
rocks suggest that they were metamorphosed in a marine
basin with a relatively high geothermal gradient and
relatively low fluid:rock ratios. Ahmat (1986) attributed the
early, very low grade metamorphic event to burial
metamorphism.

Subsequent greenschist-facies regional metamorphism
affected most greenstones of the lower succession on
BUNGALBIN. Dalstra et al. (1999) described low- and high-
strain greenschist-facies rocks. Low-strain rocks,
particularly finer grained varieties, are commonly altered,
but preserve primary igneous features such as porphyritic
texture, vesicles, and varioles. Secondary minerals include
chlorite, epidote–clinozoisite, albite, and quartz. High-
strain rocks are characterized by a strongly developed
metamorphic foliation, and igneous features are rarely
preserved. In mafic rocks the metamorphic foliation is
typically defined by tremolite–actinolite, but also by
biotite and chlorite.

Amphibolite-facies rocks are only present at granite–
greenstone contacts. Most of the amphibolite-facies rocks
mapped on BUNGALBIN are derived from mafic protoliths.
They are characterized by dark, blue-green metamorphic
hornblende, and may contain clinopyroxene (diopside)
and garnet. More-magnesian rocks typically contain
tremolite and plagioclase. Banded, diopside- and epidote-
bearing amphibolite from the western side of the Yerilgee
greenstone belt (MGA 788000E 6670400N) may be
derived from calcareous, mafic sedimentary rocks. Dalstra
(1995) and Dalstra et al. (1999) showed that although
temperatures in amphibolite-facies rocks may have
been as high as 540°C, pressures were typically less
than 400 MPa. The relatively low pressures involved in
the metamorphism of these rocks indicates that the
major influence on metamorphic grade was their
proximity to the intruding granitoids. Local overprinting
of metamorphic minerals by a D2–D3 foliation and the
deformation of granitoids in D3 shear zones suggest that
the peak metamorphism was syn-D2 or earlier. However,
the differences in ages of emplacement times of various
granitoids implies that attainment of highest metamorphic
grades may be diachronous across the region (Wyche
et al., 2001a).

The late brittle faults contain retrograde assemblages
including chlorite, sericite, and quartz (Dalstra et al.,
1999).

Cainozoic geology
More than 75% of BUNGALBIN is covered by regolith, and
much of the exposed rock is deeply weathered. Mapping
of the regolith combined field observations with
interpretation of aerial photos and Landsat images. Some
ferruginous, calcareous, and siliceous (silcrete) regolith
materials have distinctive colours and patterns on Landsat
imagery. The classification system used is that of Hocking
et al. (2001), which is based on the RED (Residual–
Erosional–Depositional) scheme of Anand et al. (1993).

Relict units (Rd, Rf, Rfc, Rgpg, Rk,
Rz, Rzu)
Undivided duricrust (Rd) may be either siliceous or
ferruginous, and has been mapped predominantly in areas
underlain by granitoid rocks. It is typically covered by a
thin layer of yellow sand with clay, silt, and nodular and



20

Chen and Wyche

pisolitic laterite gravel (Sl). Lateritic duricrust (Rf ) is
nodular, pisolitic or massive. It is most common over areas
of greenstone, particularly in the southwest, and at the
southern end of the Hunt Range. Lateritic or ferruginous
duricrust commonly forms an apron around ridges of
banded iron-formation, but is most widely developed over
areas of mafic rock. Lateritic duricrust is locally preserved
as ironstone over ridge-forming units (Rfc). Although
original rock types are unrecognizable, these units were
probably metasedimentary rocks (e.g. at MGA 783100E
6636300N a ferruginous ridge caps strongly foliated rock).

Quartzofeldspathic sand over granitoid rock (Rgpg) is
characterized by red-yellow sand with sparse, typically
weathered granite outcrops. These areas of dominantly
residual sand abut, and locally grade into, areas of sandy
sheetwash and weathered and fresh granite. Most areas of
calcrete (Rk) over granites and greenstones are too small
to show at map scale. They are commonly associated with
drainage. Silcrete or siliceous duricrust (Rz) is common
over granite, and is best exposed in breakaways. However,
most areas of silcrete are too small to be shown at map
scale. Silica caprock over ultramafic rock (Rzu) is most
abundant in areas of deep weathering. On BUNGALBIN silica
caprock is locally abundant at the southern end of the Hunt
Range, and in the south-central part near the granite–
greenstone contact. In the latter area the caprock is the
only surface indication of a substantial ultramafic unit that
has been extensively intruded by granite. The only other
indications of its existence are a prominent magnetic
anomaly (Fig. 5) and chips from mineral exploration
drillholes (MGA 768400E 6632100N).

Depositional units (C, Cgpg, Clci,
Cf, Cq, W, Wf, Wq, A, Ap, Ll, Ld, Lm,
S, Sl)
Undivided colluvium (C) includes proximal deposits of
coarse to fine talus ranging from boulder gravel to silt on
steep to gently sloping ground adjacent to greenstone
outcrops, breakaways, and on ridge flanks. Colluvium has
been further subdivided where clasts and talus are
dominated by a particular composition or lithotype.
Thus, colluvium adjacent to granitoid outcrops
typically comprises quartzofeldspathic material (Cgpg)
including granitic scree, silcrete, and quartz-vein
pebbles, and quartzofeldspathic sand. Flanks of ridges that
are dominated by chert and banded iron-formation scree
(Clci) grade downslope into areas with abundant finer
ferruginous colluvium (Cf ). Colluvium of angular quartz
clasts (Cq) is common adjacent to prominent quartz veins.

Away from areas of outcrop and colluvium, sheetwash
deposits cover very gently sloping plains, typically
adjacent to areas of drainage. Undivided sheetwash
deposits (W ) may comprise sand, silt, and clay. However,
where the sheetwash is derived from ferruginous source
areas, it contains abundant fine, ferruginous grit.
Ferruginous sheetwash (Wf ) can be distinguished by its
dark red-brown pattern on aerial photos. An extensive area
of sheetwash dominated by quartz-rich debris (Wq) lies
west of Mount Dimer. The medium to coarse gravel of
angular white quartz lies on light-brown silty soil, and it

is commonly associated with leached and bleached, white,
very fine grained rock, some of which is clearly
metasedimentary (see As). Thus the whole area has a light
colour on aerial photos, and a high reflectance on Landsat
images. Although there are some small outcropping quartz
veins nearby, there is no obvious source for the vast
amount of quartz scree in the area. This area appears to
have undergone an unusual style of alteration and quartz
veining.

Alluvium (A), typically containing unconsolidated
sand, silt, and gravel, is restricted to areas where clear
drainage channels can be recognized. Away from the more
elevated areas within greenstone belts, alluvium is mapped
in broad, slightly depressed, drainage areas. Some
drainage systems contain claypans (Ap), which fill with
water during major rainfall events.

Drainage in the northern half of BUNGALBIN flows north
towards the Lake Giles playa-lake system, which lies
mainly on LAKE GILES. Lacustrine deposits along the
northern edge of BUNGALBIN represent the southern
extremity of this system. Lakes (Ll) contain silt, mud, and
sand deposits, with a veneer of halite or gypsum, or both.
Sand dunes adjacent to playa lakes (Ld) may contain sand,
silt, and evaporitic minerals. They are active systems and
are generally not densely vegetated. More stable, and
typically more densely vegetated, areas adjacent to lakes
contain mixed alluvial, eolian, and lacustrine deposits (Lm).

Sandplain deposits (S) characterized by yellow sand,
with local minor pisolitic laterite, form extensive sheets
over areas of granitoid rocks. This material may be
residual in part, but probably contains a substantial eolian
component. Sandplain and silt with nodular and pisolitic
laterite gravel (Sl) is mapped over areas of duricrust. These
areas have been mainly interpreted from Landsat images
where the underlying duricrust has a distinct iron
character. The sand is yellow to reddish-yellow and may
have both residual and eolian components.

Economic geology
Gold, iron, nickel, and copper have been the major mineral
exploration targets on BUNGALBIN. Only gold has been
mined. The only documented base metal mineralization
in the region is a small copper deposit hosted by a quartz
vein in mafic rocks to the west on JACKSON (Marston,
1979; Riganti and Chen, 2002). No volcanic-hosted
massive sulfide (VHMS)-style mineralization has been
identified in the Marda Complex.

Gold
Gold has been the most widely sought mineral commodity
on BUNGALBIN, with all greenstone areas having been
explored to some degree. Several small deposits were
mined during the 1990s, but there is no record of gold
production before this time.

The greatest gold production on BUNGALBIN has come
from the Mount Dimer operation of Tectonic Resources
NL (Fig. 2). This deposit, described by McIntyre and
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Czerw (1998), contains several lode-gold orebodies, and
some minor laterite-hosted orebodies. The lode deposits
are hosted in both granitic and mafic rocks at the contact
between extensive granite, mainly monzogranite, to the
south and a greenstone succession containing mafic and
ultramafic rocks to the north. The gold is in north-
northwesterly striking, east-dipping shear zones. The
mineralized shoots are associated with laminated quartz–
sulfide veins and, locally, in massive sulfide veins. There
are common mafic xenoliths in the granite, and the
greenstones are locally metamorphosed to the amphibolite
facies. The Mount Dimer deposit produced 3933.47 kg
of gold from 780.68 kt of ore (Western Australian
Department of Industry and Resources, mines and mineral
deposits information database, MINEDEX). Mining
commenced in February 1994 and ceased in August 1997.
The mine also produced 5881.17 kg of silver (Resource
Information Unit, 2001).

The Aurora gold mine (Fig. 2) is a supergene deposit
hosted in iron-rich clays and minor quartz (Resource
Information Unit, 2001). The deposit produced 176.39 kg
of gold from 13.58 kt of ore between 1996 and 2001
(MINEDEX database). Mining activity at Aurora ceased
in 2002 (Amalg Resources NL Quarterly Report,
June 2002).

A third small deposit at Taipan, about 6 km east of the
main Mount Dimer deposits (Fig. 2), is hosted by mafic
rocks. This deposit has a recorded production of 265.91 kg
gold. In 1994–95, 184.10 kg of gold was produced from
52 kt of ore (MINEDEX database).

Iron
There has been a considerable amount of exploration for
iron ore deposits in the Marda–Diemals region. While
potentially economic deposits have been identified to the
west and northwest on JACKSON (Riganti and Chen, 2002),
no such deposits have been found on BUNGALBIN. However,
an inferred resource of 65.7 Mt of ore at a grade of 57.9%
iron (i.e. 38 Mt contained metal) has been estimated near
Bungalbin Hill (MINEDEX database). The deposits have
formed by structurally controlled secondary enrichment
of banded iron-formation (BHP, 1954–1983).
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Appendix 1

Gazetteer of localities mentioned
in the text

_____ MGA coordinates _____
Locality Easting Northing

Aurora mine 753400 6629950
Bungalbin Hill 753100 6634900
Dooling Soak 755800 6675000
Kurrajong Rockhole 777750 6657750
Mount Dimer 780800 6639100
Mount Dimer mine 771800 6634000
Taipan mine 778200 6634300
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Appendix 2

Whole-rock geochemical data for BUNGALBIN

GSWA No. 143363 156282 156283 156284 156285 159416 159422 159432 159440 159442 159466
Rock type Peridotite Basalt Basalt Basalt Basalt Monzogranite Monzogranite Granite Rhyolite Peridotite Basalt
Locality Bungalbin Hill Mount Dimer Yendilberin Yendilberin Yerilgee Hunt Range Kurrajong Dooling Bungalbin Aurora Hunt Range

west east Hills Hills belt southeast Rockhole Soak Hill north south
Easting 742500 784000 784800 781800 787100 778000 777600 754900 748700 755000 776600
Northing 6634600 6639400 6631800 6632100 6675700 6652000 6657900 6674800 6648900 6625900 6652000

Percentage
SiO2 40.72 50.53 53.66 49.79 52.43 74.39 74.20 74.60 77.26 43.66 54.68
TiO2 0.17 0.81 0.62 1.12 0.99 0.25 0.20 0.14 0.30 0.22 0.63
Al2O3 3.47 13.88 14.27 14.43 13.13 13.31 13.43 13.55 13.00 4.54 14.43
Fe2O3 6.95 1.95 1.49 3.92 2.47 1.03 0.57 0.46 0.45 3.61 2.16
FeO 4.44 8.92 8.23 9.09 9.95 0.95 1.42 1.11 0.41 5.47 6.76
MnO 0.14 0.21 0.16 0.21 0.19 0.04 0.05 0.05 0.01 0.12 0.21
MgO 31.93 7.69 8.27 6.96 6.69 0.30 0.42 0.30 0.06 29.17 5.16
CaO 0.47 11.67 7.96 8.90 9.08 1.04 1.58 1.15 0.16 4.10 14.61
Na2O <0.02 2.28 2.25 3.45 3.21 3.67 3.77 3.62 4.90 0.00 0.55
K2O 0.01 0.15 0.18 0.33 0.29 4.63 3.91 4.64 2.65 0.01 0.03
P2O5 0.01 0.03 0.06 0.08 0.06 0.07 0.04 0.04 0.01 0.01 0.04
BaO 0.00 0.00 0.01 0.01 0.01 0.09 0.08 0.09 0.12 0.01 0.01
S 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.01
CO2 0.11 0.03 0.03 0.04 0.03 0.03 0.01 0.02 0.12 0.03 0.03
H2O- 0.32 0.06 0.05 0.10 0.16 0.09 0.06 0.09 0.23 0.33 0.08
H2O+ 10.55 1.24 2.82 1.73 1.42 0.30 0.35 0.36 0.82 8.44 0.82
Total 99.27 99.46 100.06 100.15 100.11 100.18 100.08 100.22 100.52 99.73 100.18
Fe2O3(Total) 11.88 11.86 10.64 14.02 13.53 2.09 2.14 1.69 0.91 9.69 9.67

Part per million
Sc 20 48 52 50 47 4.5 4.3 4.1 11 25 45
V 69 259 227 312 272 12 13 8.9 3.9 101 223
Cr 3 415 260 80 180 205 3.9 7.6 4.6 3.1 2 789 410
Ni 1 410 136 70 129 133 2.1 4.7 2.7 5.8 1 610 153
Cu 5.9 40 79 177 76 4.5 8.4 5.7 6.5 35 11
Zn 47 97 58 78 74 32 36 28 9.1 49 65
Ga 3.0 13 14 18 15 15 16 17 16 4.5 16
Ge 0.9 2.5 1.3 1.5 1.2 1.2 1.1 1.4 0.7 0.9 1.3
As 6.7 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Se <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
Br 0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 2.0 <0.5 <0.5
Rb 1.4 2.8 7.4 9.4 9.2 247 210 260 63 1.2 1.0
Sr 3.5 113 94 111 62 127 127 104 74 4.4 90
Y 3.5 18 20 24 21 15 20 14 32 5.1 16
Zr 12 40 40 59 54 154 125 121 367 12 43
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Nb 1.4 3.3 2.7 3.7 3.2 14 12 13 14 1.3 3.3
Mo 0.6 0.6 <0.5 <0.5 <0.5 1.7 <0.5 <0.5 1.4 <0.5 <0.5
Ag 0.5 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Cd 0.4 <0.2 0.2 <0.2 0.2 0.2 <0.2 0.1 <0.2 0.2 0.2
In <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2
Sn 0.2 0.6 0.2 0.6 0.6 2.9 2.5 2.4 2.5 0.2 0.6
Sb 0.9 0.2 0.3 0.8 0.3 <0.5 <0.5 <0.5 0.5 0.3 0.2
Te <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.0 <0.5 <0.5
I <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7
Cs 1.0 1.4 0.7 0.6 1.1 6.4 1.4 3.1 1.4 <0.4 <0.4
Ba 3.8 22 49 91 71 741 620 705 1 012 45 25
La 1.9 2.2 1.6 <1 <1 25 29 35 16 <1 3.6
Ce 2.4 2.7 4.2 1.7 3.0 85 60 64 27 1.1 7.4
Nd 2.7 5.3 2.9 5.7 3.3 17 21 17 10 1.8 6.2
Hf <3 <3 <3 <3 <3 5.5 3.9 5.3 8.8 <3 <3
Ta <8 <8 <8 <8 <8 <8 <8 <8 <8 <8 <8
W <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5
Tl <0.7 <0.7 <0.7 <0.7 <0.7 1.1 0.8 0.8 <0.7 <0.7 <0.7
Pb 2.2 7.5 2.1 6.2 2.0 43 43 53 17 1.8 2.5
Bi <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6
Th 1.1 <1 <1 <1 <1 38 33 39 24 <1 <1
U <1 <1 <1 <1 <1 3.8 16.8 6.1 3.6 <1 <1
La 1.527 0.914 – – 1.531 – – – – 0.425 4.278
Ce 2.643 2.397 – – 3.670 – – – – 1.234 9.593
Pr 0.395 0.431 – – 0.750 – – – – 0.211 1.345
Nd 1.631 2.282 – – 4.153 – – – – 1.090 5.854
Sm 0.450 0.952 – – 1.770 – – – – 0.396 1.684
Eu 0.148 0.390 – – 0.701 – – – – 0.065 0.626
Gd 0.538 1.508 – – 2.607 – – – – 0.556 2.034
Tb 0.094 0.312 – – 0.482 – – – – 0.103 0.348
Dy 0.624 2.411 – – 3.353 – – – – 0.737 2.410
Ho 0.134 0.567 – – 0.729 – – – – 0.169 0.520
Er 0.381 1.801 – – 2.196 – – – – 0.509 1.504
Tm 0.059 0.286 – – 0.338 – – – – 0.082 0.232
Yb 0.374 1.822 – – 2.139 – – – – 0.522 1.495
Lu 0.058 0.296 – – 0.339 – – – – 0.081 0.232

ΣREE 9.06 16.37 – – 24.76 – – – – 6.18 32.16
(La/Yb)CN 2.93 0.36 – – 0.51 – – – – 0.58 2.05

NOTES: Major- and trace-element analyses, including La, Ce, and Nd, were carried out at the Australian National University, Canberra, by X-ray fluorescence (XRF). Complete rare earth element analyses were carried out at the University of Queensland by inductively coupled plasma
mass spectrometry (ICP-MS). The techniques are discussed in Morris (2000)

Reference
MORRIS, P. A., 2000, Composition of Geological Survey of Western Australia geochemical reference materials: Western Australia Geological Survey, Record 2000/11, 33p.
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