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planet, a process that has been in operation since the Archean. Partial melting of the
deep crust and transport of those melts to shallower levels results in a chemically
stratified crust, with a refractory, dehydrated lower portion overlain by a complementary -
enriched upper portion. This chemical differentiation process also fractionates the
heat-producing elements (HPE; U-Th—K), which are generally enriched in crustal melts,
preferentially moving them to shallower depths. The progressive chemical stratification
of the crust greatly alters its thermal structure and rheology through time, ultimately

ion

TO CRATONIZATION

The differentiation of continental crust is a fundamental process in the evolution of our
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Following Cycle 4 magmatism, the orogenic crust displays a broad secular change to more rigid behaviour akin to that of the bounding Archean Yilgarn and Pilbara
Cratons, allowing the emplacement of abundant mafic dykes and sills into the shallow crust, and the formation of thick intracontinental sedimentary basins.

Isotopic data

Samarium—Neodymium whole-rock data, and Lu—Hf and &0 isotopic data from previously, well-dated magmatic and inherited zircon from the four main felsic
magmatic cycles are used here to highlight the differentiation and thermal history of this tract of orogenic crust.
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Cycle 3 rocks were generated in a complex tectonomagmatic setting, from three main source components including minor amounts of mantle-derived material,
shallow crustal rocks and a significant contribution from a previously unknown 2280-2115 Ma-aged deep- to mid-crustal component (D-MC).

Cycle 4 granitic rocks show no isotopic evidence for the involvement of mantle-derived source components, and appear to have been generated by the direct melting
and recycling of rocks similar in isotopic composition to Cycle 3 rocks as well as interaction with the D—MC.

Crustal differentiation and cratonization

The progression, from an active magmatic arc (Cycle 2) to reworking with
minor amounts of new crustal growth (Cycle 3) to exclusive reworking
(Cycle 4), was accompanied by a progressive decrease in the contribution
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