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Imaging a magmatic underplate  
with 3D gravity modelling:  

east Albany–Fraser Orogen margin

by

LI Brisbout and RE Murdie

Abstract
3D gravity forward modelling demonstrates that dense material is required in a zone of thickened crust that extends along the Archean 
Yilgarn Craton margin and Proterozoic east Albany–Fraser Orogen. This dense material has been modelled in the lower crust, coincident 
with a non-reflective zone in deep-crustal active seismic profiles, confirming results from previous 2D gravity forward modelling of 
the orogen. The geophysical properties of this voluminous lower-crustal zone are consistent with an interpretation of a magmatic 
underplate. One possibility is that the underplate formed during Paleo- to Mesoproterozoic extension along the Yilgarn Craton margin. 
Alternatively, it is possible that the underplate is related to the Gnowangerup–Fraser dyke swarm, part of the Marnda Moorn Large 
Igneous Province (1218–1202 Ma), that was emplaced in the southern Yilgarn Craton, subparallel to the margin, during Stage II of the 
Mesoproterozoic Albany–Fraser Orogeny.

KEYWORDS: gravity anomalies, orogenic margin, seismic profiles, three dimensional models

Introduction
Over the past 15 years, the Geological Survey of Western 
Australia (GSWA) has acquired new geological and 
geophysical data in the east Albany–Fraser Orogen 
(Fig.  1). The current study has used some of these 
datasets to construct a regional-scale 3D model of the east  
Albany–Fraser Orogen and Yilgarn Craton margin. This 
model and supporting datasets are available from the 
Department of Mines, Industry Regulation and Safety 
(DMIRS) Data and Software Centre. The 3D model was 
constructed using the implicit modelling software package 
GeoModeller. Major constraints on the model include:

•	 an interpreted bedrock geology map (Spaggiari, 2016)

•	 a recently acquired high-resolution Moho model from 
passive seismic data (Sippl et al., 2018)

•	 three crustal-scale reflection seismic lines — 
12GA- AF3 in the north (Fig. 2a), and 12GA-AF1 
and its western continuation 12GA-AF2 in the south 
(Fig. 2b; Spaggiari et al., 2014c).

The 3D model was further constrained by the construction 
of seven 2D gravity forward models. 

The regional-scale 3D model was then tested using 3D 
gravity forward modelling. This method was selected 
due to the distinct gravity anomalies produced by the 
orogen. The forward modelling approach used was to 
vary the densities applied to the 3D model, based on 
constraints provided by petrophysical data, with the 
aim of reproducing the major observed Bouguer gravity 
anomalies. One of these is the Rason Gravity Low (Fraser 

and Pettifer, 1980), a continental-scale, northeast-trending 
gravity low that is observed along the southeastern edge of 
the Yilgarn Craton, and within the Northern Foreland and 
Biranup Zone of the east Albany–Fraser Orogen (Fig. 3). 
The gravity low extends to the northeast for ~500  km, 
parallel to the dominant trend of the east Albany–Fraser 
Orogen. Previous 2D gravity forward modelling has 
suggested that the Rason Gravity Low is the product of a 
northeast-trending zone of thickened crust that contains a 
large dense unit in the lower crust (Tassell and Goncharov, 
2006; Murdie et al., 2014; Sippl et al., 2018).

Regional geology

Tectonic units
The 3D model volume includes the southeastern Archean 
Yilgarn Craton and the adjacent Paleoproterozoic to 
Mesoproterozoic east Albany–Fraser Orogen (Fig.  1). 
The Albany–Fraser Orogen is composed of Archean and 
Proterozoic crust that has been extensively reworked during 
the Proterozoic (Kirkland et al., 2011). The orogen is 
divided into two main tectonic units: the Northern Foreland 
and the Kepa Kurl Booya Province (Fig. 1). 

The Northern Foreland is composed mainly of Yilgarn 
Craton rocks modified by Proterozoic events (Myers, 
1990, 1995a; Spaggiari et al., 2014a). These rocks are 
predominantly greenschist to lower amphibolite facies 
Archean granites and greenstones. The Northern Foreland 
also includes upper amphibolite to granulite facies Archean 

http://www.dmirs.wa.gov.au/datacentre
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Figure 1. 	 Geology of the east Albany–Fraser Orogen after Spaggiari (2016) showing the location of the 3D model, 2D sections and 
some of the geophysical datasets used in model construction. Legend after Quentin de Gromard et al. (2017). Yilgarn 
Craton terrane boundaries from 1:500 000 State interpreted bedrock geology of Western Australia (GSWA, 2016)
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rocks of the Munglinup Gneiss (Beeson et al., 1988; 
Myers, 1990; Spaggiari et al., 2009; Quentin de Gromard 
et al., 2017). In the east Albany–Fraser Orogen, the 
Northern Foreland is separated from the Yilgarn Craton 
by the Jerdacuttup Fault and the Cundeelee Shear Zone 
(Fig.  1a,b). These are imaged in active seismic lines 
12GA- AF2 and 12GA-AF3 as listric southeast-dipping 
structures that extend from the surface to the middle crust 
(Fig. 2; Spaggiari et al., 2014c). 

The Kepa Kurl Booya Province is divided into four tectonic 
zones: the Tropicana, Biranup, Fraser and Nornalup Zones. 
With the exception of the Tropicana Zone, which is located 
north of the model area, all are included in the 3D model. 
The Biranup Zone extends along the length of the orogen 
and is dominated by Paleoproterozoic orthogneiss with 
lesser amounts of metagabbroic and hybrid rocks, and 
paragneiss (Spaggiari et al., 2011). The Biranup Zone is 
separated from the Northern Foreland by the Red Island 
Shear Zone in the southwest (Fig. 2b), and by a series 
of shear zones that include the Frog Dam and Oak Dam 
Shear Zones in the northeast (Fig. 2a). Both structures 
dip southeast and sole onto the top of the lower-crustal 
Gunnadorrah Seismic Province (described below; Fig. 2a,b; 
Spaggiari et al., 2014c). 

In the east Albany–Fraser Orogen, the Fraser Zone 
produces a distinct, high-amplitude Bouguer gravity 
anomaly (Fig. 3). The Fraser Zone contains the Fraser 
Range Metamorphics, which comprises amphibolite to 
granulite facies metagabbro with lesser metagranitic and 
metasedimentary rocks (Spaggiari et al., 2011; Smithies 
et al., 2013; Maier et al., 2016). Metasedimentary rocks 
of the Fraser Zone belong to the Snowys Dam Formation 
of the Arid Basin (Spaggiari et al., 2014b). The Fraser 
Zone is separated from the Biranup Zone by the linked 
Fraser Shear Zone and Harris Lake Shear Zone, imaged 
in 12GA-AF3 as southeast-dipping structures that extend 
from the surface to the middle crust (Fig. 2a; Spaggiari 
et al., 2014c). 

The eastern Nornalup Zone comprises Paleoproterozoic 
granitic and mafic gneisses that have been extensively 
intruded by the Mesoproterozoic Recherche and Esperance 
Supersuites (Spaggiari et al., 2011; Smithies et al., 2015). 
The Recherche Supersuite (1330–1276 Ma) is dominated 
by amphibolite to granulite facies metasyenogranite, 
metamonzogranite and metagranodiorite (Myers, 1995b; 
Nelson et al., 1995; Spaggiari et al., 2011), but also includes 
metagabbros and metagranites of the Fraser Zone (Smithies 
et al., 2015; Maier et al., 2016). The Recherche Supersuite 
was emplaced during Stage I of the Albany–Fraser Orogeny 
and includes the Southern Hills Suite and Gora Hill Suite. 
Granitic rocks of the Gora Hill Suite record a southeast to 
northwest trend of increasingly juvenile compositions and 
decreasing age (Smithies et al., 2015).

The Esperance Supersuite (1198–1140  Ma) comprises 
greenschist to amphibolite facies metagranitic rocks and 
undeformed granites emplaced during Stage II of the 
Albany–Fraser Orogeny (Myers, 1995b; Spaggiari et al., 
2011; Smithies et al., 2015). The Esperance Supersuite is 
part of a widespread magmatic event named the Maralinga 

Event, which includes the Moodini Supersuite of the 
Madura and Coompana Provinces, and the Pitjantjatjara 
Supersuite of the Musgrave Province (Spaggiari et  al., 
2016). This event is interpreted to have resulted in 
cratonization of the crust between the West Australian 
Craton and the South Australian Craton (Kirkland et al., 
2017; Spaggiari et al., 2018).

To the southwest, the Nornalup Zone is separated from 
the Biranup Zone by the Coramup Shear Zone, imaged 
in 12GA-AF1 and 12GA-AF2 as a southeast-dipping 
structure that soles onto the top of the Gunnadorrah 
Seismic Province (Fig. 2b; Spaggiari et al., 2014c). To 
the northeast, the Nornalup Zone is separated from the 
Fraser Zone by the Newman and Boonderoo Shear Zones. 
The Boonderoo Shear Zone is imaged in 12GA-AF3 as a 
northwest-dipping structure that terminates at the Fraser 
Shear Zone (Fig. 2a; Spaggiari et al., 2014c). To the east, 
the Nornalup Zone is separated from the Madura Province 
by the East Rodona Shear Zone, imaged in 12GA-AF3 as 
a southeast-dipping structure that extends from the upper 
to lower crust, terminating at the top of the Gunnadorrah 
Seismic Province (Fig. 2a; Spaggiari et al., 2014c). 

Moho
Active seismic reflection (Spaggiari et al., 2014c) and 
passive seismic data (Sippl et al., 2018) have imaged a zone 
of thickened crust along the Yilgarn Craton and Albany–
Fraser Orogen margin (Fig. 2). The Moho model, generated 
by receiver function analysis of the ALbany–FRaser 
EXperiment (ALFREX) passive seismic data, shows a 
V-shaped Moho depression beneath the Northern Foreland 
and Biranup Zone, parallel to the craton margin (Sippl 
et  al., 2018). The Moho depression reaches a maximum 
depth of ~10 km, relative to the Moho beneath the Yilgarn 
Craton and the Nornalup Zone. The depression steepens to 
the southwest, particularly on the northwestern side. This 
change in dip coincides with the inferred surface location 
of the Ida Fault (Sippl et al., 2018). 

Along 12GA-AF3, there are two interpretations of the 
geometry of the Moho depression. The reflection seismic 
interpretation shows the upper mantle extending in a wedge 
between the non-reflective zone and the Gunnadorrah 
Seismic Province (Fig. 2; Spaggiari et al., 2014c). In 
contrast, the Moho model from receiver function analysis 
images a symmetric V-shaped geometry (red dashed line in 
Fig. 2; Sippl et al., 2018).

The crust is interpreted to have been thickened during 
the Albany–Fraser Orogeny by underthrusting of the 
Gunnadorrah Seismic Province, in the lower crust of the 
Albany–Fraser Orogen, beneath the Yilgarn Craton (Sippl 
et al., 2018). The possibility that the Moho depression 
was produced by subduction to the northwest, beneath the 
Yilgarn Craton, is considered unlikely given the lack of 
continental arc or subduction-related rocks in the Albany–
Fraser Orogen and the lack of geochemical or isotopic 
evidence for subduction (Smithies et al., 2015; Spaggiari 
et al., 2015). 
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Lower crust

Non-reflective zone

Reflection seismic profiles 12GA-AF2 and 12GA-AF3 
image a large (~25  km thick) non-reflective body in the 
middle to lower crust, within the zone of thickened crust 
(Fig. 2; Spaggiari et al., 2014c). This non-reflective zone 
has been interpreted as a zone of alteration, deformation or 
magmatism (Korsch et al., 2014). The truncation of shear 
zones by this non-reflective zone indicate that it may have 
formed late during the Albany–Fraser Orogeny (Spaggiari 
et al., 2014c). Geologically constrained 2D gravity forward 
modelling along seismic lines 12GA-AF2 and 12GA-AF3 
suggest the non-reflective zone is dense (Murdie et al., 
2014). 

Southwest of our study area, a refraction seismic profile 
traversing the Yilgarn Craton and west Albany–Fraser 
Orogen imaged a ~30  km deepening of the Moho 
depression, referred to as a crustal root (Tassell and 
Goncharov, 2006). 2D gravity forward modelling along 
the profile, with initial model densities calculated from the 
velocities retrieved from seismic refraction, demonstrates 
that the crustal root is very dense (3.25 g/cm3; Tassell and 
Goncharov, 2006). The dense, non-reflective zone imaged 
in the current study is most likely equivalent to this crustal 
root, which Tassell and Goncharov (2006) proposed to have 
formed by Proterozoic taphrogenesis (rifting). 

Gunnadorrah Seismic Province

The Gunnadorrah Seismic Province is a 10–15 km thick 
unit in the lower crust of the east Albany–Fraser Orogen and 
Madura Province (Fig. 2; Spaggiari et al., 2014c, 2017). It 
is defined in reflection seismic data by subhorizontal, weak 
to moderate amplitude reflectors. The Gunnadorrah Seismic 
Province thickens to the northeast reaching a maximum 
thickness of 16 km at the eastern end of 12GA-AF3. To 
the northwest, the Gunnadorrah Seismic Province thins, 
terminating in the Moho trough beneath the non-reflective 
zone where it is interpreted to underthrust the non-reflective 
zone and Yilgarn Craton (Spaggiari et al., 2014c).

Seismic reflection profile 13GA-EG1, which continues to 
the east of 12GA-AF3, suggests the Gunnadorrah Seismic 
Province extends beneath the Madura Province, terminating 
at the Mundrabilla Shear Zone (Spaggiari et al., 2017). 
The lower-crustal Gunnadorrah Seismic Province could 
be interpreted as a magmatic underplate formed during the 
Maralinga Event. Previous 2D gravity forward modelling 
suggests the Gunnadorrah Seismic Province is relatively 
dense (2.85 g/cm3) and possibly decreases in density to the 
west (Murdie et al., 2014). 

Tectonic events and models
Several Archean events are recognized in the Archean 
Tropicana Zone of the Kepa Kurl Booya Province, 
northeast of the model volume. The oldest is the 
2722– 2445 Ma Atlantis Event, characterized by sanukutoid 
magmas and protracted amphibolite to granulite facies 
metamorphism (Kirkland et al., 2015; Tyler et al., 2015). 
This was followed by the 2520–2505 Ma Tropicana Event, 

characterized by fluid-induced gold mineralization and 
greenschist facies metamorphism, interpreted to result from 
exhumation of the Tropicana Zone along the Plumridge 
Detachment (Tyler et al., 2015; Occhipinti et al., 2017).

During the Proterozoic, the southeastern margin of the 
Yilgarn Craton underwent major modification. This began 
with the formation of the 1815–1600  Ma Barren Basin, 
an interpreted continental rift or distal back-arc basin 
(Spaggiari et al., 2014b; Smithies et al., 2015). Formation 
of the Barren Basin was accompanied by magmatism 
during the Salmon Gums (1815–1800  Ma) and Ngadju 
Events (1780–1760  Ma), and widespread magmatism in 
the eastern Biranup Zone during the Biranup Orogeny 
(1710–1650 Ma). Biranup magmas between c. 1800 and 
1650  Ma are divided into an early phase involving the 
remelting of Archean crust and addition of mantle material, 
and a late phase of recycling previously recycled Archean 
felsic crust with an increase in the proportion of mantle 
material (Smithies et al., 2015). 

The Biranup Orogeny was followed by a period of 
quiescence and the formation of the Arid Basin, for which 
the tectono-sedimentary setting is interpreted as an ocean–
continent transition and passive margin (Spaggiari et al., 
2014b, 2018). Tectonic quiescence was interrupted by a 
switch to convergence at the onset of the Mesoproterozoic 
Albany–Fraser Orogeny (Spaggiari et al., 2015).

The Albany–Fraser Orogeny is divided into Stage I 
(1330– 1260  Ma) and Stage II (1225–1140  Ma) (Clark 
et al., 2000; Bodorkos and Clark, 2004; Smithies et al., 
2015). Stage I is characterized by high-temperature 
metamorphism, deformation, and the voluminous felsic 
and mafic magmatism of the Recherche Supersuite 
(Clark et al., 2000; Bodorkos and Clark, 2004; Quentin 
de Gromard et al., 2017). This stage is interpreted to have 
been associated with the collision and accretion of the 
Loongana Arc of the Madura Province onto the eastern 
Nornalup Zone (Spaggiari et al., 2015, 2018). Collision 
is interpreted to have resulted from the east-dipping 
subduction of oceanic crust outboard of the Albany–Fraser 
Orogen, beneath the Loongana Arc. Recherche Supersuite 
magmatism is interpreted to have migrated from southeast 
to northwest, possibly due to mantle upwelling during slab 
detachment from east-dipping subduction (Smithies et al., 
2015). In an alternative model, the Arid Basin is interpreted 
as a back-arc basin, and collision of the Madura Province 
and the Albany–Fraser Orogen occurred due to west-
dipping subduction of oceanic crust beneath the Loongana 
Arc (Morrissey et al., 2017).

Stage II of the Albany–Fraser Orogeny is characterized 
by high-temperature metamorphism (Clark et al., 2000; 
Kirkland et al., 2011; Quentin de Gromard et al., 2017) and 
intense craton-vergent deformation (Bodorkos and Clark, 
2004), and emplacement of the Esperance Supersuite 
into the Nornalup Zone (Clark et al., 2000). Stage II is 
interpreted to have occurred in an intracratonic tectonic 
setting (Spaggiari et al., 2011). Esperance Supersuite 
magmatism took place during the 1220–1120  Ma 
Maralinga Event (Spaggiari et al., 2016, 2018). This 
widespread and voluminous event is interpreted to have 
cratonized the basement of the Madura and Coompana 
Provinces, joining the West Australian and South Australian 
Cratons (Spaggiari et al., 2016; Kirkland et al., 2017).
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3D modelling method

Model construction
The 3D model has been constructed using implicit 
modelling software GeoModeller (Intrepid Geophysics). 
Implicit modelling uses an interpolation algorithm to 
connect point and line data to create 3D surfaces. These 
surfaces are then used to create 3D volumes. In contrast, 
explicit modelling methods do not use an interpolator and 
the 3D surfaces are constructed directly from the data. An 
advantage of implicit modelling is that it can be a fast way 
of constructing 3D surfaces, although one consequence 
is that the interpolator can introduce artefacts into the 
model. An outcome of GeoModeller’s scalar potential 
field interpolator (Lajaunie et al., 1997) is smoothed model 
geometries. 

The interpreted bedrock geology map and geological 
sections, including the geological interpretations of the 
seismic lines and geological sections from 2D forward 
modelling, have been digitized in GeoModeller. The Moho 
depth points from passive seismic data have been imported 
as 3D points. These and other data that have been used to 
constrain the model are described in detail below (Model 
constraints). 

Gravity forward modelling
The 3D model has been tested by gravity forward 
modelling. There are several benefits to testing a model 
against gravity data. One is the lithospheric scale (at least) 
of gravity data which makes it possible to test crustal-
scale models. Another is that densities retrieved from 
modelling can be directly related to rock type, although 
often not uniquely. One of the major limitations of forward 
modelling is that the results are non-unique; in other words, 
there are many possible density models that will satisfy the 
gravity data, although this number is reduced by the use of 
geological constraints. Another limitation is that regional-
scale gravity forward modelling can produce large residual 
values due to a single density being assigned to an entire 
tectonic unit.

In the modelling approach used here, the geological 
boundaries at the surface and in sections were fixed, as 
was the Moho. Densities were assigned to the 3D model 
using specific gravity data and 2D model densities as a 
starting point. In an iterative process, model densities 
were manually adjusted, the Bouguer gravity response of 
the model was calculated and compared to the observed 
gravity, and model densities were adjusted to improve the 
fit between the observed and calculated data. The observed 
and calculated gravity are compared by calculating the 
residual gravity, which is the observed Bouguer gravity 
subtracted from the calculated Bouguer gravity. The 
residual shows quantitatively where the model densities 
or geometries need to be modified. Positive residual 
values indicate density deficits and negative residual 
values indicate density excess. Here, we aim to construct a 
geologically constrained model that can produce the major 
features of the observed gravity data.

In the model area, gravity data have been collected at 
~2.5  km station spacing, and at 400  m station spacing 
along the seismic lines. Data were gridded to a 400  m 
cell size and a spherical cap correction has been applied 
using a crustal density of 2.67 g/cm3 (Fig. 3). We assume 
the source of all the observed components of the Bouguer 
gravity data are within the crust, or due to the crust and 
upper mantle boundary (the Moho), and consequently no 
regional trend has been removed from the observed gravity 
data.

To perform 3D gravity forward modelling, the geological 
model has been discretized into voxels 1 km3 in volume. 
This voxel size was determined by the resolution of the 
gravity data (2.5 km station spacing) and is a compromise 
between the higher-resolution geological data (1:250 000) 
and the much sparser data from the Moho depths (50 km 
station spacing). 

Model constraints

Topography

The topographic surface of the model has been sampled 
from the Shuttle Radar Topographic Mission (SRTM) 
digital elevation model (Jarvis et al., 2004). 

Surface geology

Geological units at the surface have been modelled on 
the scale of tectonic structural zones. Unit boundaries 
have been digitized in GeoModeller from the recently 
interpreted bedrock geology map (Fig. 1; Spaggiari, 2016).

Moho

The Moho has been constrained by a Moho model obtained 
from P-wave receiver function analysis of the ALFREX 
passive seismic data (Sippl et al., 2018). The ALFREX 
array covers an area of ~200 000 km2 with stations spaced 
~50 km apart. The array extends from the margin of the 
Yilgarn Craton to the eastern Nornalup Zone (Fig. 1). 
Included are two permanent stations and five temporary 
stations from the West Australian Craton deployment. 
A high-resolution Moho map has been produced by 
computing Moho depths at individual piercing points for 
all receiver functions at each station (Sippl et al., 2018). 
These points and Moho picks along the active seismic lines 
have been used to constrain the Moho in the model volume. 

The  Moho dep th  po in t s  have  been  impor ted 
into GeoModeller as 3D points and interpolated, in 
GeoModeller, to produce a surface (Fig. 4). The Moho 
surface produced in GeoModeller has been compared to 
a Moho depth grid produced by interpolation (kriging) 
of Moho depth points in Geosoft’s Oasis Montaj. This 
was done to ensure the Moho depth points have been 
interpolated reasonably well in GeoModeller. Any 
topographic errors introduced into the Moho surface will 
produce spurious, long-wavelength gravity anomalies. 
Comparison of the Moho surface from kriging (Fig. 5a) 
with the Moho surface produced in GeoModeller (Fig. 5b) 
shows very minor differences.
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Densities

Densities assigned to the 3D model have been constrained 
by specific gravity data and 2D gravity models (discussed 
below). Specific gravity has been calculated for 213 
Albany–Fraser Orogen rock samples retrieved from the 
GSWA archive (Fig. 6a; Appendix). Specific gravity has 
been calculated using the following equation:

mdry/(mdry – mwet)

where mdry is the mass of the dry rock sample and mwet is 
the mass of the rock sample submerged in water (Emerson, 
1990). This specific gravity dataset makes it possible 
to assign realistic densities to the model but also has 
limitations. These include the sparsity of data compared to 
the model volume, the bias towards exposed rocks, and the 
lack of data for the unexposed middle-crustal and lower-
crustal rocks units.

Specific gravity data have been grouped by tectonic 
zone and displayed in histograms and box and whisker 
plots (Fig. 6b,c). The histograms show that the Northern 
Foreland, Biranup Zone and Fraser Zone have multimodal 
specific gravity distributions but the basic rock types 
within tectonic zones (mafic, felsic and metasedimentary 
rocks) generally have unimodal distributions. Multimodal 
distributions are difficult to represent in gravity forward 
modelling, where only one density can be assigned to 
each unit. This is one of the limitations of regional-scale 
gravity forward modelling. Despite this, outliers have 

been removed from the specific gravity distributions and 
the mean and median have been calculated for each unit 
(Table 1). These are the starting values assigned to the 3D 
density model.

The upper mantle has been modelled with a density of 
3.3  g/cm3. This value is consistent with upper-mantle 
densities calculated from a P-wave seismic velocity model 
(Tassell and Goncharov, 2006) and studies of lithospheric 
mantle samples (Poudjom Djomani et al., 2001).

Geology at depth 

Active seismic

Three deep-crustal reflection seismic profiles traverse 
the model volume: 12GA-AF1 and 12GA-AF2 in the 
southwest, and 12GA-AF3 in the northeast (Fig. 1). 
Geological interpretations of these profiles (Spaggiari et al., 
2014c) on the scale of tectonic zones and seismic provinces 
have been digitized in GeoModeller. 

The geometry of the non-reflective zone in 12GA-AF3 has 
been simplified by removing the sliver of upper mantle 
and extending the base of the non-reflective zone to the 
top of the Gunnadorrah Seismic Province (see Fig.  7). 
This simplified geometry is more consistent with the 
Moho model from passive seismic data (red dashed line in 
Figure 2).

03.08.20

Eastern Goldfields 
SuperterraneYouanmi Terrane

South West Terrane

200000mE

6200000mN
10 000

50 000

6400000

400000 600000

Moho depth (m)

30 00040 00050 000

Figure 4. 	 Moho surface constructed in GeoModeller from Moho pierce point data from the ALFREX passive seismic 
survey (Sippl et al., 2018). Vertical exaggeration = 1.5. Yilgarn Craton margin and terrane boundaries from 
1:500 000 tectonic units of Western Australia (GSWA, 2017)
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Figure 5. 	 Comparison of two Moho depth models from different interpolation methods: a) Moho 
depth grid interpolated from pierce point data using kriging in Oasis Montaj; b) Moho 
surface interpolated from pierce point data using GeoModeller scalar potential field 
interpolator. The models show 1:500 000-scale structures (GSWA, 2016)
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3D unit (sample number) Rock type

Specific gravity 
mean ± std 
deviation  
(g/cm3)

Specific gravity 
median  
(g/cm3)

3D model 
density  
(g/cm3)

Constraints on unit geometry

Madura Province metagabbro and metagranite – – 2.70
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic 
(Spaggiari et al., 2014b), and 2D density models

Nornalup Zone mafic unit 2 not exposed – – 3.00 Interpreted reflection seismic and 2D density models

Nornalup Zone mafic unit 1 not exposed – – 3.00 2D density models 

Nornalup Zone (n = 21)
granitic gneiss and metagranite, minor 
metamafic rocks

2.70 ± 0.08 2.70 2.67
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic 
(Spaggiari et al., 2014b), and 2D density models

Fraser Zone (n = 97)
metagabbro, metaganite and minor 
metasedimentary rocks

2.92 ± 0.18 2.99 3.00
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic, 
and 2D density models

Biranup Zone (n = 73)
metagranite, granitc gneiss and 
metamafic rocks

2.75 ± 0.15 2.71 2.72
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic 
(Spaggiari et al., 2014b), and 2D density models

Munglinup Gneiss (n = 2) granitic gneiss and minor mafic rocks 2.68 – 2.70
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic 
(Spaggiari et al., 2014b), and 2D density models

Northern Foreland (n = 19) metagranite and metamafic rocks 2.78 ± 0.20 2.679 2.70
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic 
(Spaggiari et al., 2014b), and 2D density models

Yilgarn Craton metagranite and metamafic rocks – – 2.70
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic 
(Spaggiari et al., 2014b), and 2D density models

Lower crustal non-reflective zone not exposed – – 2.95 Interpreted reflection seismic (Spaggiari et al., 2014b) and 2D density models

Gunnadorrah Seismic Province not exposed – – 2.85
Interpreted bedrock geology (Spaggiari, 2016), interpreted reflection seismic 
(Spaggiari et al., 2014b), and 2D density models

Upper mantle not exposed – – 3.30 Surface constructed from Moho piercing points (Sippl et al., 2018) 

Table 1. 	 Units of the 3D model with rock types, final model densities, mean and median specific gravity data, and datasets used to constrain model geometry
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2D density forward models

Seven crustal-scale 2D density models have been 
constructed to constrain the 3D model: three along the 
reflection seismic profiles and four in between the seismic 
profiles (Sections A–D; Fig. 1). 2D models have been 
constructed using gravity forward modelling in GM-SYS 
(Oasis Montaj) and model geometries have been digitized 
in GeoModeller.

In the three models along the seismic lines, the geometry 
of tectonic zones and the Moho are fixed according to 
the reflection seismic interpretations. The densities of the 
tectonic zones were allowed to vary, constrained by the 
petrophysical data, until an acceptable fit was achieved 
between the calculated and observed gravity. These final 
model densities were applied to models A–D that are 
unconstrained by seismic. 

In models A–D, the Moho has been constrained by 
different methods depending on the available data. In 
sections A–C, the Moho has been constrained from 
common conversion point profiles. In section D, the Moho 
has been sampled from gridded Moho pierce point data.

At the surface, model geometries along sections A–D have 
been constrained by the interpreted bedrock geology map. 
At depth, model geometries have been extrapolated from 
adjacent seismic profiles and constrained by structural 
observations where available. The 2D model densities and 
the geological boundaries, except for the Moho, have then 
been adjusted to achieve a best fit between observed and 
calculated gravity. The final geometries of these models 
have been digitized in GeoModeller.

The most prominent feature in the observed gravity profiles 
is the Bouguer gravity high produced by the dense Fraser 
Zone (Fig. 7). In models A–D, the northwestern margin of 
the Fraser Zone is bounded by the linked Harris Lake and 
Fraser Shear Zones and dips moderately to the southeast. 
This is constrained by the interpretation of 12GA-AF3 
(Fig. 2a), and is consistent with density models from 
gravity inversion (described below).

The southeastern margin of the Fraser Zone, within the 
model volume, is bounded by the Newman Shear Zone. 
In sections A and D, this structure has been modelled as 
subvertical, based on structural measurements of mylonite 
zones at Newman Rocks (Spaggiari et al., 2011; Quentin 
de Gromard et al., 2017). A more complex geometry 
for the density contrast at the southeastern margin of 
the Fraser Zone is suggested by density models from 
unconstrained gravity inversion (see below). To satisfy 
the observed gravity data, the Newman Shear Zone has 
been modelled with a low density (Fig. 7b,c). Low density 
material is also required to the northwest of the Newman 
Shear Zone in section A. This has been modelled as a 
wedge of lower density material above the Fraser Zone 
(Fig. 7b). 

Another major feature of the observed gravity profiles 
is the long wavelength Rason Gravity Low (Fig. 3, 7). 
Gravity profiles show that the minimum of the Rason 
Gravity Low is located to the northwest of the zone of 
thickened crust. In the model profile for 12GA-AF3, the 
gravity low produced by the thickened crust is shifted to 
the northwest by modelling a large non-reflective zone in 
the lower crust with a high density (2.95 g/cm3; Fig. 7a). 

This unit has also been included in sections A–D, where 
it shifts the calculated gravity minimum to the northwest, 
and in section 12GA-AF2, where it produces a broad 
gravity high (Fig. 7f). An attempt was made to shift the 
calculated gravity minimum to the northwest by increasing 
the density of the Biranup Zone and Munglinup Gneiss. 
However, when constrained by the geometries interpreted 
in reflection seismic data and measured specific gravity 
data, this was not possible.

2D density modelling shows that the Biranup Zone varies 
in density between 2.70 and 2.75  g/cm3 (Fig. 7). The 
Biranup Zone is denser where it is adjacent to the Fraser 
Zone, in sections 12GA-AF3, B and D, and has highest 
density in the S-bend region (2.75 g/cm3) in section D.

Observed Bouguer gravity data show two distinct gravity 
anomalies in the Nornalup Zone, to the southeast of the 
Fraser Zone (Fig. 7a–c). The northeastern anomaly is 
coincident with linear magnetic horizons, suggesting 
the source may extend into the upper crust. This gravity 
anomaly is traversed by 12GA-AF3, but was not well 
imaged. Along 12GA-AF3, unexposed subhorizontal 
reflective rafts are imaged in the middle to upper crust of 
the Nornalup Zone. However, even modelled with a high 
density, the gravity anomaly produced by these rafts is not 
large enough to fit the observed anomaly (Murdie et al., 
2014). Hence, in the 2D density model along 12GA-AF3, 
these reflective rafts have been modelled as part of a larger 
dense unit (3 g/cm3) to satisfy the observed gravity data. A 
unit with a similar geometry has been included in sections 
A and D to satisfy the observed gravity data.

Most observed gravity profiles show that the east Albany–
Fraser Orogen is associated with a broad gravity high 
compared to the Yilgarn Craton (Fig. 7). This is enhanced 
in upward continued Bouguer gravity images (described 
below). In 2D density models, this gravity high is 
interpreted to be produced, in part, by a relatively dense 
Gunnadorrah Seismic Province (2.85 g/cm3) in the lower 
crust of the east Albany–Fraser Orogen.

3D gravity inversion

Density and susceptibility models from gravity and 
magnetic inversion, respectively, have also been used 
to guide the model geometries. This method has the 
advantages of being rapid to run and producing 3D models 
of density or susceptibility. Inversions have been run using 
Geosoft’s VOXI Earth Modeller. Gravity inversion assumes 
density contrasts within a 40 km-thick crust with no Moho 
topography (models were run before the Moho model 
was available). The range of possible model densities has 
been constrained in some inversions. Magnetic inversion 
assumes magnetic contrasts within the top 15 km of crust. 
Density models have been useful for imaging the dense 
Fraser Zone, particularly where no outcrop or reflection 
seismic data are available.

The Fraser Shear Zone is located on a steep gravity 
gradient between the Biranup Zone and the denser 
Fraser Zone. In density models this gradient is imaged 
as a sharp density contrast that has a consistent, steep 
southeast dip (~75°; Fig. 8). In the southwestern 
Fraser Shear Zone, this orientation is consistent with 
the dominant, moderate to steeply east or southeast-
dipping foliation (Quentin de Gromard et al., 2017).  
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Figure 7. 	 (continued): c) Section D; d) Section B
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Figure 7. 	 (continued): e) Section C; f) 12GA-AF2, with geometries constrained by seismic interpretation;  
g) 12GA-AF1, with geometries constrained by seismic interpretation
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This orientation is also broadly consistent with the dip 
of the Fraser Shear Zone in reflection seismic profile 
12GA- AF3. However, in 12GA- AF3, the Fraser Shear Zone 
has a much shallower dip (~35°) than in the density model.

The Newman Shear Zone is defined by a demagnetized 
zone up to 60 km long and 5 km wide. It is also located 
on a steep gravity gradient, in this case between the dense 
Fraser Zone and the less dense Nornalup Zone. Sections 
through the density model show that the southeastern 

margin of the Fraser Zone varies in dip direction along 
strike, but is generally subvertical to steeply northwest 
or southeast dipping (Fig. 8). Newman Rocks, within the 
demagnetized zone that defines the Newman Shear Zone, 
is one of the few locations where the Newman Shear Zone 
is exposed. Here, mylonite zones within a metagranite 
are steeply southeast dipping to subvertical (Quentin de 
Gromard et al., 2017). The orientations of these mylonite 
zones are broadly consistent with the subvertical density 
contrast imaged at this location. 
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Figure 8. 	 Sections through the 3D density models from gravity inversion showing the geometry of the Fraser Zone. 
Density models image the moderately southeast-dipping Fraser Shear Zone that bounds the northwestern 
margin of the Fraser Zone. Locations of sections shown on Figures 1 and 2. VE = 1
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Magnetic inversion was performed in an attempt to 
image the southwestern Newman Shear Zone, where the 
demagnetized zone is over 5  km wide. In susceptibility 
models (voxel size 500  m) and density models (voxel 
size 1000  m), the Newman Shear Zone is imaged as a 
steeply northwest-dipping magnetic and density contrast 
(Fig. 9a,b). The susceptibility model also suggests the 
southeastern margin of the Newman Shear Zone dips 
southeast below magnetic material of the Nornalup Zone 
(Fig. 9a).

The models from inversion also contain artefacts that are 
the result of assumptions applied to the model and the 
method itself. The density model from gravity inversion 
shows a large, very low-density body in the lower crust 
(Fig. 8). The body is an artefact of the density model, and is 
partly a result of the incorrect assumption that the Moho is 
flat. A large low-density body in the lower crust contradicts 
the results from much better constrained 2D and 3D gravity 
forward modelling, that show a dense body in a zone of 
thickened crust. However, comparing these models does 
illustrate the importance Moho topography can have on 
crustal-scale gravity modelling.

Another artefact of the density model is the exaggerated 
depth of the Fraser Zone. In density models, the Fraser 
Zone density anomaly extends to a maximum depth of 

~40  km. This is unrealistic and much deeper than in 
reflection seismic where the Fraser Zone extends to a depth 
of ~15 km, and 2D forward modelling which suggests that 
the Fraser Zone has a maximum depth of ~20 km using a 
density of 3 g/cm3. This smearing of anomalies at depth is 
a common feature of models from unconstrained inversion.

Upward continued Bouguer gravity 

Upward continuation is a mathematical filter used to 
calculate the magnetic or gravity field at a height above the 
measured data, enhancing long-wavelength features. As a 
rule of thumb, Jacobsen (1987) suggests that the upward 
continued height is equal to or less than half the depth of 
the source. 

Bouguer gravity data upward continued to 60 km shows a 
long-wavelength gravity high underlying the east Albany–
Fraser Orogen and Madura Province, and increasing in 
amplitude towards the coast (Fig. 10). This anomaly is 
broadly coincident with the extent of the lower-crustal 
Gunnadorrah Seismic Province and is interpreted to 
indicate a relatively dense Gunnadorrah Seismic Province, 
possibly associated with the Maralinga magmatic event 
during Stage II of the Albany–Fraser Orogeny (Spaggiari 
et al., 2016).
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Results

3D geological model
The final 3D geological model has dimensions 600 km (x) 
x 400 km (y) x 75 km (z) and comprises 12 units (Fig. 11). 
Model units are listed in Table 1 along with the datasets 
used to constrain the geometry of each unit. Some of the 
major features of the model include the ~10  km deep, 
northeast-trending Moho depression along the craton 
margin (Fig. 11a). Units of the lower crust include 
the voluminous non-reflective zone within the Moho 
depression and the Gunnadorrah Seismic Province in the 
lower crust of the east Albany–Fraser Orogen (Fig. 11b). 
The Gunnadorrah Seismic Province thickens to the 
northeast, and tapers out to the northwest, terminating in 
the Moho depression beneath the non-reflective zone. In 
the northwest of the model, the Yilgarn Craton has been 
modelled as one unit, comprising the Youanmi Terrane and 
the underlying Udarra Seismic Province, together with the 
Eastern Goldfields Superterrane and underlying Yarraquin 
Seismic Province (Fig. 11c). At depth, the Yilgarn Craton 
extends to the southeast beneath the units of the east 
Albany–Fraser Orogen. 
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Figure 10. 	 Bouguer gravity data, upward continued to 60 km, showing a long-wavelength gravity high in the east Albany–Fraser 
Orogen broadly coincident with the Gunnadorrah Seismic Province

Adjacent to the Yilgarn Craton, the Northern Foreland and 
Munglinup Gneiss extend to depths of ~10  km and dip 
to the southeast beneath the Biranup Zone (Fig. 11c,d). 
The Munglinup Gneiss has been modelled separately 
from the rest of the Northern Foreland to test whether it 
could be the source of the gravity high observed along 
strike southwest of the Rason Gravity Low (Fig. 3). The 
Biranup Zone extends to the southeast, beneath the Fraser 
and Nornalup Zones, terminating in the lower crust on the 
top of the Gunnadorrah Seismic Province. In the northern 
half of the model, the Fraser Zone extends to a maximum 
depth of ~15 km. The northwestern margin of the Biranup 
Zone, bounded by the Fraser Shear Zone, has been 
modelled as dipping moderately southeast (Fig. 11c). The 
southeastern margin, bounded by the Newman Shear Zone, 
has been modelled as subvertical although, as previously 
described, this southeastern contact is not well constrained. 
The Nornalup Zone and Madura Province occupy the 
southeastern half of the model. Two poorly constrained 
mafic units, Nornalup Zone mafic units 1 and 2, have been 
modelled in the middle to upper crust of the Nornalup 
Zone (Fig. 11c). These mafic units are included to satisfy 
two long-wavelength gravity anomalies and are discussed 
further below. To the southeast of the Nornalup Zone, 
separated by the West Rodona Shear Zone, the Madura 
Province has been modelled as one unit. 
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Final 3D density model
The final 3D density model is shown in Figure 12. This 
model reproduces several of the regional-scale observed 
Bouguer gravity anomalies, including the Rason Gravity 
Low and the Fraser Zone gravity high. The model 
also produces some large residual values, which is a 
consequence of performing gravity forward modelling on 
a regional-scale model. 

In the final density model, a gravity low similar to the 
Rason Gravity Low (feature 1 in Fig. 13a,b) has been 
produced by a zone of thickened, dense lower crust, as 
suggested by previous 2D gravity forward modelling 
(Tassell and Goncharov, 2006; Murdie et al., 2014; Sippl 
et al., 2018). This zone extends to the northeast along the 
length of the model (~500 km) and in cross-section has a 
flying saucer shape and a maximum thickness of ~30 km 
(Fig. 12b). 

Both 2D and 3D gravity forward modelling show that the 
northeast-trending zone of thickened crust, constrained 
by the Moho model, produces a long-wavelength gravity 
low along the craton margin. However, compared to the 
observed Rason Gravity Low, the minimum of the gravity 
low is too far to the southeast and, in places, the amplitude 
is too low. This indicates dense material is required in the 
thickened crust, to shift the gravity low to the northwest. 
This has been achieved by modelling the non-reflective 
lower-crustal zone with a high density (2.95  g/cm3). 
An attempt was also made to shift this anomaly to the 
northwest by increasing the density of the units of the 
upper crust, the Northern Foreland, Biranup Zone and 
Munglinup Gneiss. However, these models had large 
residual values and specific gravity data do not support a 
high-density Munglinup Gneiss or Northern Foreland.

Broadly along strike of the Rason Gravity Low, to the 
southwest, is an observed gravity high (feature 2 in 
Fig. 13a). In gravity forward modelling along 12GA-AF2, 
the source of this gravity high is interpreted to be the dense 
non-reflective zone in the lower crust (Murdie et al., 2014). 
In 3D, a gravity high similar to the observed high can also 
be produced by dense, thickened crust (feature 2 in Fig. 
13b).  A gravity high, rather than a low, is the result of 
a shallower Moho depression (~5 km deep) and a larger 
lower-crustal dense zone (~20 km thick). Several models 
attempted to produce this anomaly by increasing the 
density of the Munglinup Gneiss, exposed at the surface 
below this anomaly; however, these models had large 
residual values and are not supported by specific gravity 
data.

The Biranup Zone has been modelled with a relatively high 
density of 2.72 g/cm3, but in places still contains density 
deficits. The largest deficit is in the region of the S-bend 
(feature 3 in Fig. 13c), indicating that in this region the 
Biranup Zone is most likely denser and more mafic. 

The Fraser Zone has been modelled with a density of 
3.00 g/cm3 and a maximum depth of ~15 km. The Fraser 
Shear Zone bounds the northwestern margin of the Fraser 
Zone and has been modelled with a southeast dip. The 
southeastern margin is bounded by the Newman Shear 
Zone and has been modelled with a subvertical dip. This 
geometry generally produces low residual values; however, 
an exception is along the Newman Shear Zone, where 

model density excesses (feature 4 in Fig. 13c) indicate that 
the Fraser Zone is dominated by felsic rather than mafic 
material.

The Nornalup Zone has been modelled with a density 
of 2.67  g/cm3 and contains two dense units, Nornalup 
Zone mafic units 1 and 2 (3.00  g/cm3; Fig. 12c). These 
unexposed units have been modelled in the middle to upper 
crust, as suggested by the depth of mafic rafts in interpreted 
seismic line 12GA-AF3. This unit is not well imaged in 
reflection seismic but has been included in an attempt to 
reproduce the two moderate-amplitude gravity anomalies in 
the Nornalup Zone, southeast of the Fraser Zone (features 
5 and 6 in Fig. 13a).

A poorly constrained, approximately west-oriented 
increase in the depth of the Moho, broadly aligned with the 
southwest end of the Fraser Zone, produces large residual 
values (density deficits) in the northeastern Nornalup Zone 
(feature 7 in Fig. 13c). This is despite the addition of the 
two mafic units to the northeastern Nornalup Zone, and the 
northeast thickening of the dense Gunnadorrah Seismic 
Province. The crust to the south of this Moho feature 
has negative residual values (density excess; feature 8 in 
Fig. 13c). These results suggests that the crust (Nornalup 
Zone or Gunnadorrah Seismic Province) to the north of this 
west-oriented increase in Moho depth has a higher density 
(more mafic composition) than the crust to the south of 
this structure.

Discussion

Dense, non-reflective magmatic 
underplate
The dense, non-reflective zone imaged at the margin of the 
Yilgarn Craton and east Albany–Fraser Orogen has many 
of the geophysical properties typically associated with a 
magmatic underplate. Magmatic underplating is defined 
by Thybo and Artemieva (2013) as the addition of mafic 
magma to the lower crust and uppermost mantle above and 
below the Moho. Discriminators of underplated material 
are non-unique but include high P- and S-wave velocity, 
high Vp/Vs ratio, and high density (Thybo and Artemieva, 
2013). The ALFREX passive seismic data show high Vp/ Vs 
ratios coincident with the non-reflective zone (Sippl et al., 
2018). In the northeast of the survey area, high Vp/ Vs 
values are coincident with the dense Fraser Zone. In the 
southwest, high Vp/Vs values extend beyond the extent of 
Fraser Zone (Sippl et al., 2018) and are interpreted to be 
due to the magmatic underplate.

In the geological record, interpreted magmatic underplates 
include bodies with reflective and non-reflective seismic 
character (Thybo and Artemieva, 2013). McBride et al. 
(2004) suggested that reduced reflectivity in the lower 
crust beneath the Greenland–Iceland–Faroe Ridge is 
due to hot crust at the time of emplacement, causing 
sill-like bodies to be subsumed or develop diffuse non-
reflective boundaries. Thybo and Artemieva (2013) 
interpreted reflection-free magmatic underplates to 
represent large intrusive bodies that have cooled over a 
long period of time, creating bodies with smoothly varying 
properties that are reflection free at seismic frequencies.  
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Hence, reduced reflectivity observed in the thickened 
lower crust, at the margin of the Yilgarn Craton and east 
Albany–Fraser Orogen, may be due to magmatic material 
either emplaced into a hot crust or cooled over a long 
period of time.

Emplacement of magmatic 
underplate 
Crosscutting relationships in reflection seismic data 
indicate that the interpreted underplate is younger than 
Archean and may have formed during Stage II of the 
Albany–Fraser Orogeny (1225–1140 Ma; Spaggiari et al., 
2014c) One possibility is that the magmatic underplate 
formed during Paleoproterozoic to early Mesoproterozoic 
extension along the southern Yilgarn Craton margin. 
Extension along the margin was accompanied by the 
formation of two regional basin systems the Barren 
Basin (1815–1600 Ma) and Arid Basin (1600–1305 Ma) 
(Spaggiari et al., 2014b). The Barren Basin is interpreted 
to have formed in an intracontinental rift or distal back-arc 
setting (Spaggiari et al., 2014b). One proposed tectonic 
setting of the Arid Basin is an ocean–continent transition 
and passive margin, formed by east-dipping subduction of 
oceanic crust beneath the Loongana Arc (Spaggiari et al., 
2015). Alternatively, the Arid Basin may have formed in 
a back-arc setting by west-dipping subduction of oceanic 
crust beneath the Loongana Arc (Morrissey et al., 2017). 

It is possible the magmatic underplate formed during 
intracontinental extension, synchronous with the formation 
of the Barren Basin. Corti et al. (2003), in their review of 
analogue modelling of continental extension, observed 
that, during orthogonal rifting, magma and lower crust 
are squeezed from an axial position towards the footwall 
of major normal faults, resulting in major magma 
accumulations in a lateral position with a rift-parallel trend. 
The lateral flow of magma and partially melted lower crust 
is driven by pressure gradients created during extension. 
This model may apply to Paleoproterozoic rifting along 
the southeastern Yilgarn Craton margin where northwest–
southeast intracontinental extension resulted in the 
emplacement of a large volume of magma in the footwall 
of one of the major southeast-dipping shear zones; for 
example, the Coramup and Heywood–Cheyne Shear Zones.

It is also possible that the non-reflective underplate formed 
at the continent–ocean transition during c. 1600  Ma 
breakup, as the intracontinental rift of the Barren Basin 
evolved into the marginal ocean basin of the Arid Basin. 
Breakup underplates have been observed at many modern 
continent–ocean transitions, including the Faroe Islands 
(White et al., 2008) and Hatton Bank, Iceland (Fowler 
et al., 1989), on the North Atlantic margin. In the Faroe 
Islands seismic profile, a large reflection-free zone is 
interpreted as an underplated body that formed during 
breakup as a substantial volume of magma was emplaced 
and solidified slowly (Thybo and Artemieva, 2013). 

Another interpretation is that the dense, non-reflective 
zone, interpreted here as a magmatic underplate, 
was emplaced at the same time as the c.  1210  Ma 
Gnowangerup–Fraser dyke swarm (Spaggiari et al., 
2014c). This interpretation is consistent with crosscutting 
relationships that indicate the non-reflective zone formed 
during Stage II of the Albany–Fraser Orogeny (Spaggiari 
et al., 2014c). The Gnowangerup–Fraser dykes intrude 
the Northern Foreland and southern Yilgarn Craton, 
subparallel to the Yilgarn Craton margin, just northwest 
of the interpreted magmatic underplate (Fig. 14). These 
dykes belong to the 1218–1202  Ma Marnda Moorn 
Suite, which is part of the extensive Marnda Moorn 
Large Igneous Province (Wingate and Pidgeon, 2005; 
Wingate, 2017). This province includes dykes that intrude 
subparallel to the southern, western and northwestern 
margins of the Yilgarn Craton (Fig. 14). This voluminous 
magmatic underplate imaged along the Yilgarn Craton 
and Albany–Fraser Orogen could be a remnant of the 
craton-wide 1218–1202 Ma Marnda Moorn Large Igneous 
Province.

The interpreted magmatic underplate occupies a zone of 
thickened crust that extends along the Yilgarn Craton margin. 
Crustal thickening has been interpreted to have occurred 
during the Albany–Fraser Orogeny, as the Gunnadorrah 
Seismic Province was thrust beneath the Yilgarn Craton 
margin (Sippl et al., 2018). However, a model where 
crustal thickening is due to magmatic underplating is 
also possible and more consistent with the interpretation 
of the Gunnadorrah Seismic Province as a widespread 
magmatic underplate related to magmatism of the Esperance  
(Albany–Fraser Orogen) and Moodini Supersuites 
(Madura and Coompana Provinces) during Stage II of the  
Albany–Fraser Orogeny and the Maralinga Event.

Conclusions
Regional-scale 3D gravity forward modelling has allowed 
us to image an interpreted magmatic underplate along 
the margin of the Yilgarn Craton and east Albany–Fraser 
Orogen. Some of the datasets that have made it possible 
to construct this model include a high-resolution Moho 
model from passive seismic data, an interpreted bedrock 
geology map, and three deep-crustal reflection seismic 
profiles. Modelling demonstrates that thickened continental 
crust, occupied by a dense and non-reflective zone, can 
produce the Rason Gravity Low, a continental-scale gravity 
anomaly that extends for over 500  km at the margin of 
the southeastern Yilgarn Craton and east Albany–Fraser 
Orogen. The magmatic underplate is interpreted to have 
been emplaced in the Proterozoic, either during Paleo- to 
Mesoproterozoic extension along the craton margin, or as 
a source for the c. 1210  Ma Gnowangerup–Fraser dyke 
swarm, emplaced during Stage II of the Albany–Fraser 
Orogeny.
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