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The formation of large orebodies involves interlinked 
chemical and physical processes that operate from 
the nano to the lithospheric scale. In general, it is not 
possible to consider all these scales simultaneously to the 
same level of detail, so the processes that operate at one 
particular scale are often grouped or averaged to provide 
a basis for the next scale up. Equally, if one wants to 
understand what is happening at one particular scale, the 
physical conditions that operate at the next scale up can 
act as boundary conditions or constraints on what happens 
at the next scale down. We refer to this as a multiscale 
approach, and it results in an integrated, holistic approach 
to ore system analysis (Fig. 1). This project is an ARC 
Linkage project with funding from the GSWA, PIRSA 
(now DIMITRE), and the Silver Swan Group. The aim is 
to establish measurable parameters and indices that enable 
researchers to identify the differences between ‘successful’ 
and ‘failed’ hydrothermal systems from outcrops or 
drillcore, and to identify vectors to mineralization within 
‘successful’ systems. This approach has led us to the 
conclusion that mineralizing systems operate far from 
equilibrium, and in fact never reach equilibrium (Ord et 
al., in press).

Here we concentrate on the lithospheric scale of an 
orebody, but also consider the outcrop and mine scales. 
The lithospheric-scale investigations are based on the 
observation that many large hydrothermal systems have 
their origins in intracratonic settings, far removed from 
any subduction zones. There are, of course, an important 
group of mineralizing systems associated directly with 
subduction zones, but these are not considered as part 
of this project. Examples of mineralized hydrothermal 
systems in intracratonic settings include the Olympic 
Dam iron oxide – copper – gold, Yilgarn orogenic gold, 
Carlin gold, and, arguably, the Mount Isa systems. Similar 
examples may emerge from the as yet unprospective 
Arunta Orogen and Musgrave Province. 

For the moment, we are exploring the proposition (based 
largely on the work of Begg et al., 2009) that these mineral 
systems form within intracratonic orogens, coincident with 
zones of metasomatism in the subcontinental lithospheric 

mantle (SCLM) that have been reactivated at the time of 
mineralization. We show that tectonic deformation can 
cause spontaneous delamination of the SCLM in these 
zones, causing a concurrent and subsequent history of 
deformation, fluid infiltration from various depths within 
the SCLM, melting, and metamorphism, accompanied 
by surface processes such as erosion and sedimentation, 
all of which can last for 100 m.y. after a relatively rapid 
delamination. All of these processes leave their marks in 
the geological record, and can be indicative of an active 
mineralizing system (Gorczyk et al., 2012). Low-salinity 
fluids from relatively shallow depths, and CO2-rich fluids 
from deep in the previously metasomatized SCLM are 
both involved. The delamination process is a new kind 
of Rayleigh–Taylor instability that forms in solids, 
rather than the classical Rayleigh–Taylor instability 
studied in viscous fluids by Houseman and Molnar 
(1997) and Elkins-Tanton (2007; see also Huismans and 
Beaumont, 2002). Delamination of the SCLM causes 
a thermal–mechanical disturbance producing types of 
deformation, metamorphism, melting, and fluid flow 
at least comparable with that produced at subducting 
margins. Such delamination events are being imaged 
increasingly in modern, or relatively recently mineralized, 
intracratonic settings (West et al., 2009; Guoming et al., 
2011).

Recent results from the Albany–Fraser Orogen (Spaggiari 
et al., 2011) and the Western Australian part of the 
Musgrave Province (Howard et al., 2011; Smithies et al., 
2012) provide tectono-thermal histories for these two 
regions; these data are summarized in Tables 1 and 2. The 
timescales associated with the tectono-thermal histories 
of these two regions are important. Since a thermal pulse 
diffuses (by conduction) through a rock thickness L (in 
metres), on a timescale given by 106L2 (in seconds), 
timescales of 570 m.y. and 305 m.y. correspond to rock 
thicknesses of 135 km and 100 km, respectively, which 
are equivalent to lithospheric thicknesses. Conversely, 
the individual events lasting 100 m.y. and 40 m.y. are 
thermal events corresponding to rock thicknesses of 56 km 
and 35 km, respectively, corresponding to viable crustal 
thicknesses. The delamination process involves relatively 
rapid solid advection of SCLM through isotherms, 
and slow post-delamination tectonic relaxation. Thus, 
the timescales of 100 m.y. or less shown in Tables 1 
and 2 can be explained by the delamination process, as 
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Figure 1.  A multiscale approach to hydrothermal mineralizing systems

a result of which (at least) crustal material remains at 
high temperatures and pressures for extended periods 
corresponding to the post-delamination thermal relaxation.

Just as important as the tectono-thermal timescales is 
the width of the SCLM weak zone as an influence on 
patterns of deformation, melting, and fluid release that 
result during delamination (Fig. 4). After a critical width 
is exceeded, the pattern of deformation becomes localized, 
forming Y-shaped fault structures within the crust. The 
SCLM is advected into higher pressure–temperature 
regions below this structure, resulting in localized melting 
and devolatilization. We propose that the development of 
this localized deformation to one side of the delamination 
system is the primary focusing mechanism for large 
hydrothermal orebodies, and as such, the width of the 
delamination system is a prime criterion for failed-versus-
successful mineralizing systems. Note that this asymmetry 
is reflected in the evolution of surface topography, so there 
will be a direct record in the stratigraphic history. This 
can be seen in the Albany–Fraser Orogen and Musgrave 
Province.

At the orebody scale, it is important to treat the 
development of these hydrothermal systems as open-flow 
chemical reactors (Ord et al., in press). Here, constraints 
imposed by the lithospheric-scale modelling presented 
above can be used to impose time and volumetric flow-
rate constraints on the evolution of the system. This 
analysis results in a common history for all successful 
hydrothermal systems involving an initial stage of 
exothermic alteration (hydrous minerals, carbonates, and 
iron oxides) and the following endothermic precipitation 
of sulfides, metals, and silicates. The switch from one 
mode of operation to another requires a new mechanism 
for maintaining permeability, and this is commonly 
expressed as a stage (or several stages) of brecciation 
or vein formation. Also at this switch from one mode of 
operation to another, the most efficient systems must be 
localized, and this is seen as zoned mineralization or late 
stage alteration. 

This non-equilibrium approach supplies several criteria 
for deciding whether a particular mineralizing system has 
been successful or not, based on drillcore or exposures.



34

Figure 2.  Results of four models with different initial geometries, showing: (a) initial geometry and bulk composition; (b) second 
strain rate invariant after 20 Ma of compression at rate of 2 cm/a; (c) temperature distribution after period of 20 Ma 
(from Gorczyk et al. 2012).
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Figure 3.  Dynamic evolution of the topography above the 
developing instability: (a) run with initial perturbation 
imposed only on mantle lithosphere; (b) run with 
initial perturbation imposed on whole lithosphere, 
with additional continental root. The initial peaks 
in topography on the sides of instability are due 
to the initial equilibration of topography. Further in 
the run, peaks above the downwelling correspond 
to intrusion of magma into the crust, plus mountain 
building processes, as a result of deep lithospheric 
detachment (from Gorczyk et al., 2012).
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Figure 4.  Influence of width of SCLM weak zone on the delamination process. Models are 300 km thick in all cases; width of 
weak zone varies from 50 km at the top to 400 km at the bottom; base of SCLM defined by 1300oC isotherm. Left-hand 
panel shows the geometry, with the development of Y-shaped fault systems shown in red; right-hand panel shows 
the distribution of strain rate. Inset shows the development of surface topographic relief.
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