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Mafic–ultramafic intrusion-hosted Ni–Cu–PGE deposits: 
Mineral Systems Atlas Explanatory Notes

LL Grech, G da Silva

Abstract
Western Australia contains sizeable mafic–ultramafic intrusion-hosted Ni–Cu–PGE deposits including 
Nebo-Babel, Savannah, and Nova-Bollinger. A mineral systems analysis has been performed to define critical 
and constituent processes controlling their genesis, as well as mappable proxies for these processes. 
Critical processes include: i) formation of large volumes of mafic–ultramafic magmas that will feed the 
host intrusions; ii) lithospheric-scale structures that facilitate magma transport through the crust and the 
development of dynamic subvolcanic feeder systems; iii) sulfur saturation; iv) the sequestering of metals 
into sulfides; v) the concentration of metal-rich sulfides; and vi) modification, weathering, and preservation 
of the original ore body. The constructed Mineral System Tree for mafic–ultramafic intrusion-hosted  
Ni–Cu–PGE deposits demonstrates the link between geological processes and their recommended GIS 
map layers for exploration.

KEYWORDS: copper, intrusions, nickel, platinum group elements (PGE)

Introduction
The Mineral Systems Atlas (MSA) is an interactive  
GIS-based platform that collates and delivers map-based 
geoscience data layers specifically relevant to understanding 
and exploring mineral deposits in Western Australia at 
a regional scale. Accompanying the Atlas is the Guide, 
which provides more information on the approach used, 
and importantly, specific information on how the individual 
layers were created, thus complementing the metadata 
and data dictionary information. All data layers in the MSA 
are available for downloading from the Data and Software 
Centre using the links provided. 

These Explanatory Notes aim to provide background 
information on the conceptual basis for the layers used in 
the MSA relevant to the mineral system under consideration, 
and to describe in detail the reasoning behind their selection 
and their limitations. Information in the Guide and Atlas is 
likely to evolve and be updated based upon improvements 
in our understanding of the mineral system, and when 
additions of related geoscience data become available. 

Atlas content is systematically defined by applying the 
mineral systems concept (Wyborn et  al., 1994; McCuaig 
et  al., 2010); mineral deposits will only form and remain 
preserved where there has been a spatial and temporal 
coincidence of critical processes (geodynamic setting, 
lithosphere architecture, fluid–rock interaction, ligand 
and ore component reservoir/s, fluid flow drivers and 
pathways, depositional mechanisms, post-depositional 
processes). These critical processes might be recognized 
from mappable geological features (targeting elements or 
geological proxies) expected to result from them. 

Mineral systems analysis is the term used to describe the 
process of identifying critical and constituent processes, 
geological proxies for these processes, and translating 

them into mappable proxies. The outcome of this work is 
summarized in a Mineral System Tree (Fig. 1). Such analyses 
draw upon existing literature, in-house knowledge, and 
collaborations with subject matter experts. Note that it is not 
unusual for geological proxies to represent more than one 
critical process – hence they can be listed multiple times in 
the Mineral System Tree and labelled accordingly in the MSA. 
Structured queries are then used to extract data relevant 
to those mappable proxies from one or more statewide 
databases. Where practical, queries are dynamically linked 
to primary Geological Survey of Western Australia (GSWA) 
geoscience data sources and are scheduled to update 
automatically so that new data are incorporated.

It is acknowledged that all datasets have their own 
limitations both with respect to their validity as proxies 
for the processes that they represent as well as with 
respect to their physical attributes such as sampling or 
interpretation bias and applicable scale. Also, the timing 
aspects of the proxies are not captured in many datasets, 
so further investigation is usually required to ascertain 
their significance in specific areas of interest. In general, 
the datasets used in the MSA are most relevant for use at 
the regional scale and hence are not suitable for detailed 
exploration targeting. With respect to the mafic–ultramafic 
intrusion-hosted Ni–Cu–PGE system in the MSA, most 
‘field observations’ and ‘geochemistry’ data are sparse in 
the deeper sedimentary basins, such as the Perth, Canning, 
Carnarvon and Officer Basins. These are readily identified in 
the ‘Primary data layers’: ‘Tectonic units 1:500 000’ layer. This 
sampling bias is mainly due to historical focus on petroleum-
related factors within these basins and to the sparsity of 
wells in some areas.

The MSA uses mineral system groups based upon a  
scheme proposed by Geoscience Australia (Fraser et  al., 

https://www.dmp.wa.gov.au/Mineral-Systems-Atlas-24813.aspx
https://www.dmp.wa.gov.au/msa/
https://www.dmp.wa.gov.au/Data-and-Software-Centre-1483.aspx
https://www.dmp.wa.gov.au/Data-and-Software-Centre-1483.aspx


Grech and da Silva

2

MAFIC-ULTRAMAFIC INTRUSION HOSTED NI–CU–PGE

Active pathwaySource Trap – Chemical scrubber
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Figure 1.	 The Mineral System Tree is the graphical display of a mineral systems analysis – showing the link between critical/constituent processes and their recommended targeting features and GIS layers
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2007). Under this scheme, the mafic–ultramafic intrusion-
hosted Ni–Cu–PGE system belongs in the orthomagmatic 
grouping wherein ore components are extracted and 
transported by magmas and are concentrated within these 
by igneous processes. This Record focuses specifically on 
Ni-rich examples (±Cu and PGE) including intrusion-hosted 
deposits related to flood basalts such as Noril’sk and Duluth. 
Along with the komatiite-hosted Ni–Cu–PGE system, the 
mafic–ultramafic intrusion-hosted Ni–Cu–PGE system 
represents an important style of Ni-rich mineralization 
that is currently being mined in Western Australia.  
Mafic–ultramafic intrusions can host several other 
orthomagmatic mineralization types including Ti, V, Cr, Fe, Co  
and variably PGE-enriched examples – specifically the 
anorthosite-hosted Fe–Ti–V system, the Merensky  
Reef-type Ni–PGE system and the ophiolite-hosted Cr–Ni 
system of Fraser et al. (2007). From this list, the anorthosite-

hosted Fe–Ti–V system is currently included in the MSA as 
‘layered intrusion-hosted vanadium’ (Guilliamse, 2020).

Mafic–ultramafic intrusion-hosted Ni–Cu–PGE deposits are 
found worldwide and represent some of the world’s largest 
nickel deposits (Hoatson et al., 2006). Globally, they include 
world-class examples such as Jinchuan (China), Pechenga 
(Russia) and Voisey’s Bay (Canada). In Western Australia, 
notable examples include Julimar (Gonneville; 660Mt @ 
0.63 g/t Pd, 0.14 g/t Pt, 0.02 g/t Au, 0.15% Ni, 0.083% Cu, 
and 0.015% Co), Savannah (14.57 Mt @ 1.49% Ni, 0.67% Cu 
and 0.10% Co), Nebo-Babel (West Musgrave; Nebo: 50 Mt @ 
0.34% Ni and 0.32% Cu; Babel: 340 Mt @ 0.3% Ni and 0.33% 
Cu), and Nova-Bollinger (3.9 Mt @ 1.81% Ni, 0.70% Cu and 
0.060% Co; current mineral resources estimates sourced 
from MINEDEX; Fig. 2). 
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The ‘Mineralization localities’ section in the MSA provides 
information on the locations of all current operating 
mines that have nickel as their main product as well as 
mineralization sites for each of the constituent commodities. 
As mineralization sites vary greatly in their economic 
significance, where possible they are classified accordingly. 
Note that only a small subset of these mineralization 
localities relates directly to mafic–ultramafic intrusion-
hosted Ni–Cu–PGE mineralization. These are shown as 
‘Mafic and ultramafic – layered mafic intrusions’ within the 
‘Mineralization style – Nickel’ layer. Some localities identified 
as ‘Mafic and ultramafic – undivided’ may also be relevant 
to this system.

Overall, the metallogenesis of mafic–ultramafic intrusion-
hosted Ni–Cu–PGE mineralization is well understood. 
This mineral systems analysis is informed by key existing 
literature (Schulz et  al., 2014; Barnes et  al., 2016; Barnes, 
2023), and additional consultation with subject matter 
experts and industry representatives. Results of the mineral 
systems analysis are presented in graphic form as a 
Mineral System Tree (Fig. 1), which formed the basis for the 
selection of the mappable proxies used in the MSA.

Characteristics of mafic–
ultramafic intrusion-hosted  

Ni–Cu–PGE systems 
Although no single intrusion shape appears to significantly 
favour mineralization (Barnes et al., 2016; Fig. 3), Barnes and 
Mungall (2018) note that intrusions associated with Ni–Cu–
PGE mineralization tend to have horizontal (or subhorizontal) 
rather than vertical extents. Consequently, chonoliths 
and elongate sills present attractive exploration targets  
(e.g. Noril’sk and Nebo-Babel; Fig 3; Barnes et  al., 2016). 
Barnes and Mungall (2018) further suggest that blade-
shaped dykes, while apparently having limited mineralization 
potential, may represent an end-member of intrusion 
geometry. These shapes could progressively evolve into 
more prospective forms, such as tube-funnel transitions 
and potentially tubular chonoliths, during emplacement. This 
evolution might occur through processes such as: 

lateral propagation of dikes, widening of conduits due 
to preferential thermal erosion of country rocks, gravity 
flow of sulfide–silicate–xenolith slurries, and self-
enhancing propagation of sulfide vein-dike networks 
into process zones in country rocks—coupled with 
post emplacement tilting and random intersection with 
present-day erosion surfaces (Barnes and Mungall, 
2018).

The critical processes required for mafic–ultramafic 
intrusion-hosted Ni–Cu–PGE deposits, discussed below, 
closely resemble those identified for komatiite-hosted  
Ni–Cu–PGE deposits (e.g. Grech, 2022), and are summarized 
in Barnes et  al. (2016). Key differences between these 
two deposit types are outlined in Table 1. These include: 
i) komatiite-hosted deposits are mostly Archean in age, 
while intrusion-hosted deposits span much of Earth’s 
history (140–2892 Ma; Hoatson et  al., 2006); and ii) 
intrusion-hosted deposits can be associated with rocks 
derived from magmas with mafic or ultramafic bulk 
compositions (Barnes et al., 2016), whereas komatiite-hosted  

deposits are exclusively linked to magmas of ultramafic bulk 
composition. 

A requirement common to both systems is the presence of 
high-flux magma pathways, which are a critical factor in both 
the source and trap components of these mineral systems 
(Barnes et  al., 2016). These pathways are commonly 
represented by cumulate rocks and offer several advantages: 
they promote the assimilation of wall rocks, leading to the 
addition of external sulfur; they facilitate interaction between 
large volumes of magma and sulfide droplets, resulting in 
higher ore tenors; and they concentrate large volumes of 
sulfide droplets into smaller areas (Barnes et al., 2016). 

Proxies for critical mineralization 
processes

Particular geological features of the mafic–ultramafic 
intrusion-hosted Ni–Cu–PGE mineral system are 
summarized in Table 2 (and Fig. 1), highlighting the critical 
processes deemed essential for the formation of mineralized 
deposits. The Mineral System Tree (Fig. 1) is a diagrammatic 
representation of all the important components of the 
mineral systems analysis. The mappable proxies in the lower 
section of the Mineral System Tree represent recommended 
GIS map layers that may guide future data collection relevant 
to exploring mafic–ultramafic intrusion-hosted Ni–Cu–PGE 
deposits. Only proxies with sufficient data on a regional 
scale were selected for inclusion in the MSA. These proxies, 
along with the rationale for their selection, are discussed 
below in the context of the critical and constituent processes 
identified in the mineral systems analysis.

Source
As summarized in Schulz et  al. (2014) and Barnes et  al. 
(2016), mafic–ultramafic intrusion-related Ni–Cu–PGE 
deposits are high-flux systems that require the eruption 
of large volumes of hot magmas over a short time. These 
magmas are often attributed to mantle plume activity, 
although other geodynamic settings may also play a role in 
their generation. 

T h e  g e o l o g i c a l  p r o x y  f o r  h i g h - f l u x  m a f i c –
ultramafic magmatic systems is the occurrence 
o f  l a r g e  a r e a s  o f  m a f i c – u l t r a m a f i c  r o c k s , 
o f t e n  a s s o c i a t e d  w i t h  f e l s i c  i g n e o u s  r o c k s  
(e.g. rhyolite and dacite), indicating bi-modal volcanism. 
Large igneous provinces (LIPs), which commonly represent 
such magmatic events, are extensive geological units 
typically characterized by dyke swarms. The mafic–
ultramafic components of granite–greenstone terranes 
may serve as Archean equivalent of LIPs (e.g. Ernst and 
Buchan (2003), and references therein). Greenstone belts 
and LIPs have been mapped in the MSA under ‘Tectonic 
units’ (the ‘Greenstone belts’ and ‘Large igneous provinces 
(LIP)’ layers). However, note that the ‘Greenstone belts’ layer 
is generalized and includes granitic, felsic and sedimentary 
rock components, applying only to the Pilbara and Yilgarn 
Cratons. Substantial dyke suites occur beyond mapped LIP 
areas and are presented under ‘Structures’ as ‘1:2 500 000  
State interpreted dyke suites’, with further refinement using 
the ‘Dykes density – ldke raster’ layer. However, these 
datasets are not comprehensive and do not cover all dykes 
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Figure 3.	 Schematic diagram illustrating different geometries of mafic–ultramafic intrusions, with B and C being Western Australian examples 
(after Barnes et al., 2016)
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Table1.	 Characteristics of komatiite-hosted vs mafic-hosted Ni–Cu–PGE sulfide deposits (after Barnes et al., 2016)

Table 2.	 Critical features of the mafic–ultramafic intrusion-hosted Ni–Cu–PGE mineral system

Attribute Komatiite-hosted deposits Mafic intrusion-hosted deposits

Nature of host silicate magma Low viscosity, high temperature, fast cooling 
rate, wide melting range

High viscosity, low temperature, slow cooling rates, narrow 
melting range (relatively)

Nature of sulfide ore magma Ni-rich, Cu-poor, extremely low viscosity, 
narrow melting range

Relatively Ni-poor, Cu-rich, low viscosity, wide melting range

Morphology and geometry of 
host body and plumbing system

Elongate lava tubes or channels. Predominantly 
horizontal, and lateral flow processes, vertical 
feeder dykes are rarely preserved

Tube- or funnel-shaped conduits, flow-through sill-dyke 
complexes, blade-shaped dykes. Ore formation within long-lived, 
vertically extensive recharged magmatic plumbing systems

Relationship to host rocks Thermal/mechanical erosion of floor rocks Thermal/mechanical erosion of floor and roof rocks, abundant 
xenoliths and intrusion breccias

‘Taxites’ and pegmatoidal rocks Virtually unknown – equivalent may be 
contaminated pyroxene-rich cumulates

Common ‘taxites’ – contaminated, vari-textured to pegmatoidal 
and locally volatile-rich gabbros at intrusion margins and within 
orebodies, common association with minor hydrous silicate 
phases

Massive ore disposition Usually planar, conformable at basal contacts, 
may inject into floor rocks

Commonly crosscut early marginal rocks of host intrusion and 
adjacent wall rocks

Breccia ores Rare – where found, due to melting of floor 
rocks and gravitational floating of detached 
xenomelts

Breccia ores common – normal Cu–Ni sulfide intrusion/injection 
breccias, rarely (as at Noril’sk) external Cu–Pd-rich explosively 
emplaced breccia/skarn ores

Fractionation of sulfide ore 
magmas

Minor, manifest as subtle differences between 
massive ores and matrix/disseminated ores

Commonly, can lead to chemical and mineralogical 
differentiation of entire orebody at scales from metres to 
hundreds of metres

Critical processes Description

Source Of mafic–ultramafic magmas

Pathway Location of lithospheric faults, ancient cratonic blocks and dyke/sill complexes, responsible for transport of 
mafic–ultramafic magmas through the crust

Chemical trap Sulfur saturation of previously sulfur undersaturated magma

Chemical and physical trap Sequestering metals into sulfides

Physical trap Concentration of metal-rich sulfides

Preservation/modifcation Of nickel orebodies
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in deeper sedimentary basins.

Mineralization is typically hosted in ultramafic cumulate 
rocks (i.e. the most primitive part of the system; Barnes et al., 
2016). Ultramafic cumulates are defined geochemically as 
rocks containing more than 32 wt% MgO (Barnes, 2006), 
with high Ni and Cr contents, but low Ti and Al (after 
Barnes, 2023). The MSA provides maps to help identify 
cumulate rocks through geochemical classifications such as  
‘MgO wt >= 32% Mafic ultramafic intrusion SOURCE’,  
‘Mg# Maf ic  u l t ramaf ic  in t rus ion  SOURCE’ ,  and 
‘Geochemistry--Cumulate classification SOURCE--ACTIVE 
PATHWAY’, as well as direct observations, e.g. ‘Field 
observations--Cumulate SOURCE--ACTIVE PATHWAY’ and 
‘Field observations – indicator mineral SOURCE’.

Other potential mafic and ultramafic source rocks are 
mapped in the MSA under ‘Lithology’, with layers such as 
‘Ultramafic SOURCE – TRAP’, ‘Mafic SOURCE – TRAP’, and 
‘Mafic intrusion SOURCE – TRAP’. These maps generally do 
not cover any subsurface mafic rocks in deep sedimentary 
basins, but relevant geochemical data from the GSWA 
database are included under ‘Geochemistry’, such as 
‘Geochemistry—Ultramafic’ and ‘Geochemistry—Mafic’.  
A subset of these data relevant to this system is provided 
under ‘Geochemistry — mafic–ultramafic intrusion’.

Active pathway
Active pathways transport large amounts of mafic–
ultramafic magmas from the upper mantle through the 
crust, with long-lived lithosphere-scale faulting and dyke 
propagation playing a fundamental role (Barnes et  al., 
2016). These transport pathways need to be accessed 
multiple times by successive magma pulses. Major crustal 
boundaries, identified through seismic and magnetotelluric 
surveys, as well as regional geochronological and isotopic 
data, are mapped in the MSA under ‘Structures’ as ‘1:2 500 
000 major crustal boundaries’ (Martin et al., 2021). 

The density of fault intersections, represented by the 
‘Structural complexity – nsre raster’ in the MSA, can help 
identify long-lived structures in cratonic blocks. Additionally, 
the presence of mantle-derived rocks such as carbonatite, 
kimberlite, lamprophyre, and sanukitoid can indicate large-
scale structures (MSA layer ‘Field observations – mantle-
derived rock ACTIVE PATHWAY’). 

Dyke propagation is a key mechanism for magma transport 
through the crust, with buoyancy and pressure at dyke tips 
facilitating upward movement (Barnes et  al., 2016). Dyke 
and sill swarms mapped on or near surface are included in 
the MSA under ‘Structures’ as ‘1:2 500 000 State interpreted 
dyke suites’, with the spatial density of dykes available as 
‘Dykes density—ldke raster’. However, note that regional 
dykes have not been fully mapped for deeper sedimentary 
basin areas. 

Cumulate rocks are also critical in identifying active 
pathways for mineralization. Therefore, combining 
information on dykes with source-related data on cumulates 
(e.g. ‘Field observations--Cumulate SOURCE--ACTIVE 
PATHWAY’, ‘Geochemistry--Cumulate classification SOURCE-
-ACTIVE PATHWAY’ and ‘MgO wt >= 32% Mafic ultramafic 
intrusion SOURCE’) can provide further insights into 
mineralization potential.

Chemical scrubber trap
In mafic–ultramafic intrusion-related Ni–Cu–PGE 
systems, sulfur undersaturated magmas typically reach 
sulfur saturation during emplacement, often through the 
assimilation of sulfur-rich sedimentary rocks (e.g. Arndt 
et  al., 2005; Lightfoot, 2007; Keays and Lightfoot, 2010). 
Sulfidic sedimentary rocks and evaporites (e.g. Seat et al., 
2009) are mapped in the MSA under ‘Field observations – 
sulfidic sedimentary rock TRAP – CHEM SCRUBBER’ and 
‘Evaporites and diapirs SOURCE’. These datasets, however, 
are not comprehensive, particularly with respect to sulfides 
within or evaporites in deeper basins.

In some instances, external sulfur introduction may not be 
required for sulfur saturation, as in Nebo-Babel, where silica 
addition is suspected to have induced sulfur saturation 
(Seat et al., 2009; Godel et al., 2011). Sulfides within mafic 
and ultramafic intrusive rocks are potential indicators 
of sulfur saturation (MSA layers ‘Sulfur wt% ≥1% mafic–
ultramafic intrusion TRAP – CHEM SCRUBBER’ and ‘Field 
observations—Nickel copper sulfide mineral TRAP—CHEM 
AND PHYS SCRUBBER’ and ‘Field observations—Pentlandite 
TRAP—CHEM AND PHYS SCRUBBER’).

Chemical/physical scrubber trap
Once sulfur saturation has occurred, chalcophile metals  
(Ni, Cu, PGE) from the silicate melt are readily sequestered 
into sulfide liquids due to their high partitioning into sulfide 
liquid and solids. In these systems, multiple influxes 
of magma into host intrusions or source chamber are 
important, as they allow for magma recharge, replenishing 
the metals in the melt. Additionally, repeated influxes 
promote high levels of interaction between silicate and 
sulfide melts, increasing the likelihood of metal scavenging 
(Schulz et al., 2014). 

A proxy for the degree of physical interaction between 
the silicate melt and sulfide droplets is the metal sulfide 
concentration in sulfides (i.e. higher Ni and Cu tenors),  
as well as the physical presence of magmatic sulfides  
in the host rocks (e.g. ‘Field observations--Pentlandite  
TRAP--CHEM AND PHYS SCRUBBER’ and ‘Field observations 
– nickel copper sulfide mineral TRAP – CHEM AND PHYS 
SCRUBBER’ layers). 

Physical throttle trap
Sulfide droplets are precipitated from the silicate melt, 
accumulating and concentrating as layers of Ni- and/or  
Cu-rich sulfide minerals. This process typically occurs 
through chemical mechanisms in response to changes 
in magma temperature, composition or mechanical 
mechanisms such as density changes (Barnes et  al., 
2016). In mafic systems, the mechanism that allows 
for the precipitation of large volumes of sulfide droplets 
without corresponding amounts of silicate melt are not well 
understood (Barnes et al., 2016). 

The physical presence of sulfides is evidence of their 
accumulation, which can be confirmed by direct observation 
(e.g. in drillcore and thin section), and inferred using 
electromagnetic conductor data from geophysical surveys. 
Geochemical mapping of Ni, Cu and PGE in drillholes, 
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along with arsenides mapping (e.g. Le Vaillant et al., 2014), 
also indicates sulfide accumulation. The MSA includes 
regional-scale geochemical mapping of maximum grades 
in exploration drillholes for Ni, Co, Pt and Pd (available under 
the MSA ‘Drillholes—Raster’ section). Different cell sizes are 
used to display the spatial distribution of these elements 
at various scales. Where sufficient data are available, hill-
shaded images showing the number of mineralized drillholes 
per unit area are also provided to assist in visualizing 
mineralization trends. Given the limitations and known 
issues with these datasets (Ormsby et al., 2021), it is strongly 
recommended to closely examine original exploration 
reports (identified by unique ‘A-Numbers’ in the Mineral 
Exploration Drillholes layer in GeoVIEW.WA) before using this 
information for detailed work, including exploration targeting.

Modification 
Modification, weathering, and preservation are essential 
considerations in most mineral systems. Erosion is often 
favourable as it can expose mineral deposits at the surface, 
but excessive erosion may completely remove the deposit. 
Similarly, a small amount of cover can protect a mineral 
deposit from weathering and erosion, while excessive cover 
can render it uneconomic to extract. 

The nature of the regolith is another key consideration. 
Mapping transported regolith can help identify areas where 
surface geochemical sampling may not effectively detect 
anomalous pathfinder elements, especially when combined 
with regolith depth information. The MSA includes the 
surface map ‘Transported regolith’ in the primary data layers. 
Conversely, recognizing residual regolith overlying mafic 
intrusion rock units can help focus surface geochemical 
sampling programs for this style of mineralization (see the 
MSA ‘Residual regolith--Mafic intrusion MODIFICATION’ 
layer).

Conclusion
This Record summarizes the mineral systems analysis of 
the mafic–ultramafic intrusion-hosted Ni–Cu–PGE system 
and identifies critical processes for the formation and 
preservation of mineralization. The key critical processes 
include: i) formation of large volumes of mafic–ultramafic 
magmas that will feed the host intrusions; ii) lithospheric-
scale structures that facilitate magma transport through the 
crust and the development of dynamic subvolcanic feeder 
systems; iii) sulfur saturation; iv) the sequestering of metals 
into sulfides; v) the concentration of metal-rich sulfides; and 
vi) modification, weathering and preservation of the original 
ore body.

We describe links between these processes and the 
derivation of the geoscience data proxies that have been 
included in the MSA, as summarized in the Mineral System 
Tree (Fig. 1). The integration of these proxies can help 
interpret regional prospectivity and inform exploration 
strategies for these deposits. 
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